Homework 5 Due: Wednesday, February 22

1. Carefully explain how the general Stokes theorem:

If $S \subset R \subset \mathbb{R}^n$ is a smooth *k*-dimensional manifold, and if $\omega \in \mathcal{A}^{k-1}(R)$ is a smooth k – 1-form, then:

$$\int_{\partial S} \omega = \int_{S} d\omega$$

implies each of:

- (a) the fundamental theorem of calculus; (HINT: *How should one assign an orientation to the boundary of an oriented curve?*)
- (b) Green's theorem (Thm. 5.12 in [F]);
- (c) Gauss's theorem (Thm. 5.34 in [F]);
- (d) Stokes's theorem in \mathbb{R}^3 (Thm. 5.52 in [F]).
- 2. Suppose $S \subset R \subset \mathbb{R}^n$ is a *k*-manifold.
 - (a) Show that if $\omega \in \mathcal{A}^{k-2}(R)$, then $\int_{\partial(\partial S)} \omega = 0$.
 - (b) What do you think this says about the boundary of the boundary of a manifold? Explain.
- 3. Show that if $f \in \mathcal{A}^0(R)$, then $d \circ d(f) = 0$.
- 4. The diagram

$$\mathcal{A}^{0}(R) \xrightarrow{d} \mathcal{A}^{1}(R) \xrightarrow{d} \mathcal{A}^{2}(R)$$
 (*)

is called exact if, for every $\omega \in A_1(R)$ such that $d\omega = 0$, there exists $f \in A_0(R)$ such that $df = \omega$.

- (a) Suppose that *R* is simply connected. Why is (*) exact?
- (b) Let $R = \{(x, y) : \frac{1}{2} < x^2 + y^2 < 2\} \subset \mathbb{R}^2$. Show that (*) is *not* exact.

Professor Jeff Achter Colorado State University Math 418 Advanced Calculus II Spring 2012