Homework 5

Due: Wednesday, February 22

1. Carefully explain how the general Stokes theorem:

If $S \subset R \subset \mathbb{R}^{n}$ is a smooth k-dimensional manifold, and if $\omega \in \mathcal{A}^{k-1}(R)$ is a smooth k - 1-form, then:

$$
\int_{\partial S} \omega=\int_{S} d \omega
$$

implies each of:
(a) the fundamental theorem of calculus; (HINT: How should one assign an orientation to the boundary of an oriented curve?)
(b) Green's theorem (Thm. 5.12 in [F]);
(c) Gauss's theorem (Thm. 5.34 in [F]);
(d) Stokes's theorem in \mathbb{R}^{3} (Thm. 5.52 in [F$]$).
2. Suppose $S \subset R \subset \mathbb{R}^{n}$ is a k-manifold.
(a) Show that if $\omega \in \mathcal{A}^{k-2}(R)$, then $\int_{\partial(\partial S)} \omega=0$.
(b) What do you think this says about the boundary of the boundary of a manifold? Explain.
3. Show that if $f \in \mathcal{A}^{0}(R)$, then $d \circ d(f)=0$.
4. The diagram

$$
\begin{equation*}
\mathcal{A}^{0}(R) \xrightarrow{d} \mathcal{A}^{1}(R) \xrightarrow{d} \mathcal{A}^{2}(R) \tag{*}
\end{equation*}
$$

is called exact if, for every $\omega \in \mathcal{A}_{1}(R)$ such that $d \omega=0$, there exists $f \in \mathcal{A}_{0}(R)$ such that $d f=\omega$.
(a) Suppose that R is simply connected. Why is (${ }^{*}$) exact?
(b) Let $R=\left\{(x, y): \frac{1}{2}<x^{2}+y^{2}<2\right\} \subset \mathbb{R}^{2}$. Show that (${ }^{*}$) is not exact.

