Homework 2 Due: Wednesday, February 2

1. [F] 5.1.5.

- 2. [F] 5.1.6.
- 3. Prove Green's theorem in the special case where the domain *S* is a rectangle. In somewhat more detail, consider the rectangle *S* with boundary $\partial S = \bigcup_{1 \le i \le 4} C_i$, as follows:

Let $\vec{F}(x,y) = (F_1(x,y), F_2(x,y))$. Remember, $\vec{F}d\vec{x} = F_1(x,y)dx + F_2(x,y)dy$.

- (a) Write down parametrizations for each curve C_i .
- (b) For each C_i , compute $\int_{C_i} F_1(x, y) dx$ and $\int_{C_i} F_2(x, y) dy$.
- (c) Compute $\iint_{S} \frac{\partial F_2}{\partial x} dx dy$ and $\iint_{S} \frac{\partial F_1}{\partial y} dx dy$.
- (d) Deduce Green's theorem:

$$\int_{\partial S} \vec{F} d\vec{x} = \iint_{S} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy.$$

4. [F] 5.2.1.

Professor Jeff Achter Colorado State University Math 418 Advanced Calculus II Spring 2012