Lemma Summation by parts: Given a_{n} and b_{n}, set

$$
\begin{aligned}
a_{n}^{\prime} & =a_{n}-a_{n-1} \\
B_{N} & =\sum_{0 \leq n \leq N} b_{n} .
\end{aligned}
$$

Then

$$
\sum_{n \leq N} a_{n} b_{n}=a_{N} B_{N}-\sum_{1 \leq n \leq N} a_{n}^{\prime} B_{n-1}
$$

Proof Use the fact that $b_{N}=-B_{N-1}+B_{N}$. Using induction, we have

$$
\begin{aligned}
\sum_{n \leq N} a_{n} b_{n} & =a_{N} b_{N}+\sum_{n \leq N-1} a_{n} b_{n} \\
& =a_{N}\left(-B_{N-1}+B_{N}\right)+a_{N-1} B_{N-1}-\sum_{1 \leq n \leq N-1} a_{n}^{\prime} B_{n-1} \\
& =-a_{N}^{\prime} B_{N-1}+a_{N} B_{N}-\sum_{1 \leq n \leq N-1} a_{n}^{\prime} B_{n-1} \\
& =a_{N} B_{N}-\sum_{1 \leq n \leq N} a_{n}^{\prime} B_{n-1}
\end{aligned}
$$

as desired.

Dirichlet's Theorem Suppose $\left\{a_{n}\right\},\left\{b_{n}\right\}$ sequences with

1. a_{n} decreasing to zero, i.e., $a_{n+1} \leq a_{n}$ and $\lim _{n \rightarrow \infty} a_{n}=0$; and
2. The partial sums B_{N} are bounded in absolute value by some constant C, independent of N.

Then $\sum a_{n} b_{n}$ converges.

Example $\quad \sum(-1)^{n} / n$; here, $a_{n}=\frac{1}{n}, b_{n}=(-1)^{n}$. Then $\left|B_{N}\right| \leq 1$.

Proof We know the partial sums are given by

$$
\sum_{n \leq N} a_{n} B_{n}=a_{N} B_{N}-\sum_{1 \leq n \leq N} a_{n}^{\prime} B_{n-1} .
$$

Two claims: that $\lim _{N \rightarrow \infty} a_{N} B_{N}$ exists, and that $\sum_{1 \leq n \leq N} a_{n}^{\prime} B_{n-1}$ converges.
For the first, $\lim _{N \rightarrow \infty}\left|a_{N} B_{N}\right| \leq C \lim _{N \rightarrow \infty}\left|a_{N}\right|=0$.

