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Does this work? α +β

Last time: usual tests for convergence of series. (Root test, ratio test, integral test, limit comparison
test.)

Integral test good for all an ≥ 0, monotone decreasing (nonincreasing). To get it to work, need to
interpolate the an with a function f : f (n) = an; f (n) decreasing; f integrable.

Limit comparison: Given sequences {an} and {bn}, if limn→∞ an/bn exists and is (finite and)
nonzero, then ∑ an converges if and only if ∑ bn converges.

(Counter)example: If an = (−1)n/n, and if bn = 1/n, then ∑ an converges, but ∑ bn diverges

Example: Suppose bn = g(n), where g is a rational function g(x) = f (x)
h(x) . For n� 0, g(n) is always

positive or always negative. Let d = deg( f )− deg(h), and let an = nd. Then

lim
n→∞ an/bn

is nonzero, finite, exists. (Example: f (x) = x2 − 32, h(x) = −3x3 + 17x + 9; then d = −1;

an/bn =
1
n
· −3n3 + 17n + 9

n2 − 32

Note that ∑ bn converges if and only if −∑ bn converges. The point is that limn→∞ an/bn = −3; so
∑ bn converges ⇐⇒ ∑ an converges; but ∑

1
n diverges.)

Absolute vs. conditional convergence

The series ∑ an is called absolutely convergent if ∑ |an| is convergent.

Lemma Absolute convergence implies convergence.

Proof Use the Cauchy criterion. Let sN be the Nth partial sum for ∑ an, i.e., sN = ∑n≤N an, and
let s∗N = ∑n≤N |an|. Triangle inequality: if j < k, then

∣∣sk − s j
∣∣ = ∣∣∣∣∣ ∑

j<n≤k
an

∣∣∣∣∣
≤ ∑

j<n≤k
|an|

So,
∣∣sk − s j

∣∣ ≤ ∣∣∣s∗k − s∗j
∣∣∣. Since ∑ |an| converges, {s∗n} is Cauchy. Given ε > 0, there exists N

such that for j, k > N,
∣∣∣s∗j − s∗k

∣∣∣ < ε. So for such j and k,
∣∣s j − sk

∣∣ ≤ ∣∣∣s∗j − s∗k
∣∣∣ < ε, and {sN} is

Cauchy.

A series which converges, but not absolutely is conditionally convergent.
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Example Define an by

an =

{
1

n+1 n even
− 1

n n odd

Then ∑ an = 1− 1 + 1
3 −

1
3 +

1
5 −

1
5 · · · . The partial sums are given by

sN =

{
0 N odd

1
N+1 N even

So limN→∞ sN = 0, and the series converges. But ∑ |an| = 2 ∑
1

2n+1 , which diverges.

(Basic fact: ∑
1
n diverges)

Example ∑
(−1)n

n converges conditionally

The convergence is a consequence of:

Theorem Suppose {an} decreasing, positive, limn→∞ an = 0. Then

∑(−1)nan

converges.

Proof Consider the (odd) partial sums

s2N+1 = a0 + (−a1 + a2) + (−a3 + a4) + · · ·+ (−a2N−1 + a2N)− a2N+1

= a0 + (≤ 0) + (≤ 0) + · · · (≤ 0)− a2N+1

≤ a0

But,

s2N+3 = s2N+1 + (a2N+2 − a2N+3)

= s2N+1 + (≥ 0)
≥ s2N+1

So, the sequence of odd partial sums {s2N+1} is increasing, and bounded, thus has a limit, L.

Moreover, s2N = s2N+1 − a2N+1, and limN→∞ a2N+1 = 0, limN→∞ s2N = lim s2N+1 = L.

Given a series ∑ an, define

a+n =

{
an an > 0
0 otherwise

a−n =

{
−an an < 0
0 otherwise
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Let s±N = ∑n≤N a±n , and as above define s∗N = ∑n≤N |an|.

Then

sN = s+N − s−N
s∗N = s+N + s−N

Theorem If ∑ an is absolutely convergent, then ∑ a+n and ∑ a−n are each convergent. If ∑ an con-
ditionally convergent, then each of ∑ a±n is divergent.

Proof If ∑ an absolutely convergent, then lim s∗N exists. Since ∑ |an| ≥ s∗N ≥ s±N , {s+N} and {s−N}
are each increasing, bounded sequences, thus convergent.

For the converse, suppose ∑ |an| diverges. Then at least one of ∑ a+n , ∑ a−n diverges. If ∑ an con-
verges, and one of ∑ a±n converges, then the other must, too. So, if ∑ an conditionally convergent,
then both ∑ a±n diverge.

Finite sums independent of order. What about infinite sums?

Let σ : N → N be a bijection (one-to-one, onto map; permutation). Given a sequence {an}, and
such a σ , can define a rearrangement {bn = aσ(n)}. Want to compare convergence of ∑ an to that
of ∑ bn

Target: If all an ≥ 0, and {bn} a rearrangement of {an}, then ∑ an = ∑ bn

If A ⊂ N is any finite subset, define a partial sum:

sA = ∑
n∈A

an.

Lemma If each an ≥ 0, then
∑ an = sup

A⊂N finite
sA

Notation: IN = {1, 2, · · · , N}

Proof We have

∑ an = lim
N→∞ ∑

1≤n≤N
an

= lim
N→∞ sIN
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∑ an = lim
N→∞ ∑

1≤n≤N
an

= lim
N→∞ sIN

= sup
N

sIN

≤ sup
A⊂N finite

sA

But each such A ⊂ N is contained in some IN ; and since all an positive, sA ≤ sIN . So in supA⊂N, it
suffices just to consider those sets of the form IN .
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