Does this work? $\alpha+\beta$
Last time: usual tests for convergence of series. (Root test, ratio test, integral test, limit comparison test.)
Integral test good for all $a_{n} \geq 0$, monotone decreasing (nonincreasing). To get it to work, need to interpolate the a_{n} with a function $f: f(n)=a_{n} ; f(n)$ decreasing; f integrable.
Limit comparison: Given sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$, if $\lim _{n \rightarrow \infty} a_{n} / b_{n}$ exists and is (finite and) nonzero, then $\sum a_{n}$ converges if and only if $\sum b_{n}$ converges.
(Counter)example: If $a_{n}=(-1)^{n} / n$, and if $b_{n}=1 / n$, then $\sum a_{n}$ converges, but $\sum b_{n}$ diverges
Example: Suppose $b_{n}=g(n)$, where g is a rational function $g(x)=\frac{f(x)}{h(x)}$. For $n \gg 0, g(n)$ is always positive or always negative. Let $d=\operatorname{deg}(f)-\operatorname{deg}(h)$, and let $a_{n}=n^{d}$. Then

$$
\lim _{n \rightarrow \infty} a_{n} / b_{n}
$$

is nonzero, finite, exists. (Example: $f(x)=x^{2}-32, h(x)=-3 x^{3}+17 x+9$; then $d=-1$;

$$
a_{n} / b_{n}=\frac{1}{n} \cdot \frac{-3 n^{3}+17 n+9}{n^{2}-32}
$$

Note that $\sum b_{n}$ converges if and only if $-\sum b_{n}$ converges. The point is that $\lim _{n \rightarrow \infty} a_{n} / b_{n}=-3$; so $\sum b_{n}$ converges $\Longleftrightarrow \sum a_{n}$ converges; but $\sum \frac{1}{n}$ diverges.)
Absolute vs. conditional convergence
The series $\sum a_{n}$ is called absolutely convergent if $\sum\left|a_{n}\right|$ is convergent.

Lemma Absolute convergence implies convergence.

Proof Use the Cauchy criterion. Let s_{N} be the $N^{t h}$ partial sum for $\sum a_{n}$, i.e., $s_{N}=\sum_{n \leq N} a_{n}$, and let $s_{N}^{*}=\sum_{n \leq N}\left|a_{n}\right|$. Triangle inequality: if $j<k$, then

$$
\begin{aligned}
\left|s_{k}-s_{j}\right| & =\left|\sum_{j<n \leq k} a_{n}\right| \\
& \leq \sum_{j<n \leq k}\left|a_{n}\right|
\end{aligned}
$$

So, $\left|s_{k}-s_{j}\right| \leq\left|s_{k}^{*}-s_{j}^{*}\right|$. Since $\sum\left|a_{n}\right|$ converges, $\left\{s_{n}^{*}\right\}$ is Cauchy. Given $\epsilon>0$, there exists N such that for $j, k>N,\left|s_{j}^{*}-s_{k}^{*}\right|<\epsilon$. So for such j and $k,\left|s_{j}-s_{k}\right| \leq\left|s_{j}^{*}-s_{k}^{*}\right|<\epsilon$, and $\left\{s_{N}\right\}$ is Cauchy.
A series which converges, but not absolutely is conditionally convergent.

Example Define a_{n} by

$$
a_{n}= \begin{cases}\frac{1}{n+1} & n \text { even } \\ -\frac{1}{n} & n \text { odd }\end{cases}
$$

Then $\sum a_{n}=1-1+\frac{1}{3}-\frac{1}{3}+\frac{1}{5}-\frac{1}{5} \cdots$. The partial sums are given by

$$
s_{N}= \begin{cases}0 & N \text { odd } \\ \frac{1}{N+1} & N \text { even }\end{cases}
$$

So $\lim _{N \rightarrow \infty} s_{N}=0$, and the series converges. But $\sum\left|a_{n}\right|=2 \sum \frac{1}{2 n+1}$, which diverges.
(Basic fact: $\sum \frac{1}{n}$ diverges)

Example $\quad \sum \frac{(-1)^{n}}{n}$ converges conditionally
The convergence is a consequence of:

Theorem Suppose $\left\{a_{n}\right\}$ decreasing, positive, $\lim _{n \rightarrow \infty} a_{n}=0$. Then

$$
\sum(-1)^{n} a_{n}
$$

converges.

Proof Consider the (odd) partial sums

$$
\begin{aligned}
s_{2 N+1} & =a_{0}+\left(-a_{1}+a_{2}\right)+\left(-a_{3}+a_{4}\right)+\cdots+\left(-a_{2 N-1}+a_{2 N}\right)-a_{2 N+1} \\
& =a_{0}+(\leq 0)+(\leq 0)+\cdots(\leq 0)-a_{2 N+1} \\
& \leq a_{0}
\end{aligned}
$$

But,

$$
\begin{aligned}
s_{2 N+3} & =s_{2 N+1}+\left(a_{2 N+2}-a_{2 N+3}\right) \\
& =s_{2 N+1}+(\geq 0) \\
& \geq s_{2 N+1}
\end{aligned}
$$

So, the sequence of odd partial sums $\left\{s_{2 N+1}\right\}$ is increasing, and bounded, thus has a limit, L.
Moreover, $s_{2 N}=s_{2 N+1}-a_{2 N+1}$, and $\lim _{N \rightarrow \infty} a_{2 N+1}=0, \lim _{N \rightarrow \infty} s_{2 N}=\lim s_{2 N+1}=L$.
Given a series $\sum a_{n}$, define

$$
\begin{aligned}
& a_{n}^{+}= \begin{cases}a_{n} & a_{n}>0 \\
0 & \text { otherwise }\end{cases} \\
& a_{n}^{-}= \begin{cases}-a_{n} & a_{n}<0 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Let $s_{N}^{ \pm}=\sum_{n \leq N} a_{n}^{ \pm}$, and as above define $s_{N}^{*}=\sum_{n \leq N}\left|a_{n}\right|$.
Then

$$
\begin{aligned}
s_{N} & =s_{N}^{+}-s_{N}^{-} \\
s_{N}^{*} & =s_{N}^{+}+s_{N}^{-}
\end{aligned}
$$

Theorem If $\sum a_{n}$ is absolutely convergent, then $\sum a_{n}^{+}$and $\sum a_{n}^{-}$are each convergent. If $\sum a_{n}$ conditionally convergent, then each of $\sum a_{n}^{ \pm}$is divergent.

Proof If $\sum a_{n}$ absolutely convergent, then $\lim s_{N}^{*}$ exists. Since $\sum\left|a_{n}\right| \geq s_{N}^{*} \geq s_{N}^{ \pm},\left\{s_{N}^{+}\right\}$and $\left\{s_{N}^{-}\right\}$ are each increasing, bounded sequences, thus convergent.
For the converse, suppose $\sum\left|a_{n}\right|$ diverges. Then at least one of $\sum a_{n}^{+}, \sum a_{n}^{-}$diverges. If $\sum a_{n}$ converges, and one of $\sum a_{n}^{ \pm}$converges, then the other must, too. So, if $\sum a_{n}$ conditionally convergent, then both $\sum a_{n}^{ \pm}$diverge.

Finite sums independent of order. What about infinite sums?
Let $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ be a bijection (one-to-one, onto map; permutation). Given a sequence $\left\{a_{n}\right\}$, and such a σ, can define a rearrangement $\left\{b_{n}=a_{\sigma(n)}\right\}$. Want to compare convergence of $\sum a_{n}$ to that of $\sum b_{n}$
Target: If all $a_{n} \geq 0$, and $\left\{b_{n}\right\}$ a rearrangement of $\left\{a_{n}\right\}$, then $\sum a_{n}=\sum b_{n}$
If $A \subset \mathbb{N}$ is any finite subset, define a partial sum:

$$
s_{A}=\sum_{n \in A} a_{n} .
$$

Lemma If each $a_{n} \geq 0$, then

$$
\sum a_{n}=\sup _{A \subset \mathbb{N} \text { finite }} s_{A}
$$

Notation: $I_{N}=\{1,2, \cdots, N\}$

Proof We have

$$
\begin{aligned}
\sum a_{n} & =\lim _{N \rightarrow \infty} \sum_{1 \leq n \leq N} a_{n} \\
& =\lim _{N \rightarrow \infty} s_{I_{N}}
\end{aligned}
$$

$$
\begin{aligned}
\sum a_{n} & =\lim _{N \rightarrow \infty} \sum_{1 \leq n \leq N} a_{n} \\
& =\lim _{N \rightarrow \infty} s_{I_{N}} \\
& =\sup _{N} s_{I_{N}} \\
& \leq \sup _{A \subset \mathbb{N} \text { finite }} s_{A}
\end{aligned}
$$

But each such $A \subset \mathbb{N}$ is contained in some I_{N}; and since all a_{n} positive, $s_{A} \leq s_{I_{N}}$. So in sup $\operatorname{suc}_{A \subset \mathbb{N}}$ it suffices just to consider those sets of the form I_{N}.

