February 22, 2010

Given a symbol Y, 4, calculate partial sums sy = Y, <y a,, and say that },~pa, = L if and
only if limy_,0o Sy = L.

Most important series is the geometric one. Consider ¥, «”. This has a limit if |«| < 1. Key issue:

N
_ n _oav—1
a # 1,thensy = Yo<,<naissy = %

Series with positive terms.
Suppose all a; > 0. Then either ) a, = L for some finite L, or } 4, = oc.

Comparison test: Suppose 0 < a,, < b, for all n. Then

a. If Y b, converges, then so does }_ a,,.

b. If Y a, diverges, then so does }_ b,,.

Proof Letsy = Yo<u<n@n IN = Yo<n<nbn. Then {sy} and {fy} are monotone increasing
sequences. If } by converges, then the ty are bounded above (by Y by).

Then {sy} is a bounded, nondecreasing sequence of numbers, thus {sy} has a limit, and } a,
exists.

Reverse direction left as exercise. (If sy unbounded, since fN > sy, £y unbounded.) O
Integral tests:

Suppose f : [1,00) — R positive, decreasing (nonincreasing) function, f|; x) integrable.

Theorem Y, f(n) converges if and only if 1 f(t)dt is finite.
(Recall that [{° f(t)dt means limy o [{" f(t)dt.)

Sketch. For x € [n,n+1],
£ln) 2 f(x) > f(n+1)
n+1
f = [ f)ds = fn+1)

Then

Y f(n)= fdx> ) f(n).

1<n<N 1 2<n<N+1

(Key: [}V f(x)dx = Licpen [ f(x)dx.) Now take limy .o of everything. If ¥~ f(n) di-

verges, then so does Y-, f (1), and then [ f(x)dx gets arbitrarily large as N — oo.

Corollary Suppose p € R. Then } ;-1 n” converges <= p < —1.
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Proof Consider f(x) = x” and its antiderivative:

Flx) = {’é’ﬁ p# 1
In(x) p=-1

(Of course, F(x) + c is also an antiderivative for f, for any constant ¢; but [ F(x)dx = [7(F(x) +
c)dx)

Then

N JNLARI _
_ 1 1 P #—1
/1 flodx = {1?(1\1) ' p=-1

From this, we see that limy ., ;' f(x)dx is finite if and only if p < —1.

Limit comparison test: Suppose {4, } and {b, } are positive sequences. Suppose lim,_ 4, /by = L
exists and is positive (and finite). Then )" a, converges if and only if ) b, converges.

Proof There exists N such that forn > N, L/2 < a,/b, < 2L. So consider the sums Y~ 4,
and Y,~nbu. So, ¥ b, converges if and only if },,~n b, converges; but in the latter series, each
ay < 2Lby, 50 Y ,>nan < 2LY,>n by, and ¥,,> N a, converges.

Similarly, can show that if )" 4, converges, then so must }_ b,.

Ratio Test If there exists r such that a,41/a, < r < 1forn > 0, then } a, converges.
If there exists R such that a,,41/a, > R > 1 forn > 0, then } a,, diverges.

(If there exists ¥ < 1 such that there exists N such that for n > N, a,41/a, < r, then ¥ a, con-
verges.) (n > 0 means “for n sufficiently large”)

Proof Compare to geometric series. [

Example Suppose that
n—1

o2 =2n+1
Then the ratio a1 /a, is

tn fan = n n?—2n+1
T 1) =2+ 1) +1 n—1

n  (n—1)?2
(n+1)2 n
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(n—1)2

which is CESiE Unfortunately, lim, .« (that) is 1. So our tests can’t decide the convergence of this

series.

If instead, we took

b n—1
Tl —2n+17
then the limit of the ratio of successive terms is
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