Given a symbol $\sum_{n \geq 0} a_{n}$, calculate partial sums $s_{N}=\sum_{n \leq N} a_{n}$, and say that $\sum_{n \geq 0} a_{n}=L$ if and only if $\lim _{N \rightarrow \infty} s_{N}=L$.

Most important series is the geometric one. Consider $\sum_{n} \alpha^{n}$. This has a limit if $|\alpha|<1$. Key issue: $\alpha \neq 1$, then $s_{N}=\sum_{0 \leq n \leq N} \alpha^{n}$ is $s_{N}=\frac{\alpha^{N}-1}{\alpha-1}$.
Series with positive terms.
Suppose all $a_{i} \geq 0$. Then either $\sum a_{n}=L$ for some finite L, or $\sum a_{n}=\infty$.
Comparison test: Suppose $0 \leq a_{n} \leq b_{n}$ for all n. Then
a. If $\sum b_{n}$ converges, then so does $\sum a_{n}$.
b. If $\sum a_{n}$ diverges, then so does $\sum b_{n}$.

Proof Let $s_{N}=\sum_{0 \leq n \leq N} a_{n}, t_{N}=\sum_{0 \leq n \leq N} b_{n}$. Then $\left\{s_{N}\right\}$ and $\left\{t_{N}\right\}$ are monotone increasing sequences. If $\sum b_{N}$ converges, then the t_{N} are bounded above (by $\sum b_{N}$).
Then $\left\{s_{N}\right\}$ is a bounded, nondecreasing sequence of numbers, thus $\left\{s_{N}\right\}$ has a limit, and $\sum a_{n}$ exists.
Reverse direction left as exercise. (If s_{N} unbounded, since $t_{N} \geq s_{N}, t_{N}$ unbounded.)
Integral tests:
Suppose $f:[1, \infty) \rightarrow \mathbb{R}$ positive, decreasing (nonincreasing) function, $\left.f\right|_{[1, N)}$ integrable.

Theorem $\quad \sum_{n \geq 1} f(n)$ converges if and only if $\int_{1}^{\infty} f(t) d t$ is finite.
(Recall that $\int_{1}^{\infty} f(t) d t$ means $\lim _{N \rightarrow \infty} \int_{1}^{N} f(t) d t$.)
Sketch. For $x \in[n, n+1]$,

$$
\begin{aligned}
& f(n) \geq f(x) \geq f(n+1) \\
& f(n) \geq \int_{n}^{n+1} f(x) d x \geq f(n+1)
\end{aligned}
$$

Then

$$
\sum_{1 \leq n \leq N} f(n) \geq \int_{1}^{N+1} f(x) d x \geq \sum_{2 \leq n \leq N+1} f(n)
$$

(Key: $\int_{1}^{N+1} f(x) d x=\sum_{1 \leq n \leq N} \int_{n}^{n+1} f(x) d x$.) Now take $\lim _{N \rightarrow \infty}$ of everything. If $\sum_{n \geq 1} f(n)$ diverges, then so does $\sum_{2 \leq n} f(n)$, and then $\int_{1}^{N+1} f(x) d x$ gets arbitrarily large as $N \rightarrow \infty$.

Corollary Suppose $p \in \mathbb{R}$. Then $\sum_{n \geq 1} n^{p}$ converges $\Longleftrightarrow p<-1$.
Professor Jeff Achter

Proof Consider $f(x)=x^{p}$ and its antiderivative:

$$
F(x)= \begin{cases}\frac{x^{p+1}}{p+1} & p \neq-1 \\ \ln (x) & p=-1\end{cases}
$$

(Of course, $F(x)+c$ is also an antiderivative for f, for any constant c; but $\int_{a}^{b} F(x) d x=\int_{a}^{b}(F(x)+$ c) $d x$)

Then

$$
\int_{1}^{N} f(x) d x= \begin{cases}\frac{N^{p+1}}{p+1}-\frac{1}{p+1} & p \neq-1 \\ \ln (N) & p=-1\end{cases}
$$

From this, we see that $\lim _{N \rightarrow \infty} \int_{1}^{N} f(x) d x$ is finite if and only if $p<-1$.
Limit comparison test: Suppose $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are positive sequences. Suppose $\lim _{n \rightarrow \infty} a_{n} / b_{n}=L$ exists and is positive (and finite). Then $\sum a_{n}$ converges if and only if $\sum b_{n}$ converges.

Proof There exists N such that for $n \geq N, L / 2<a_{n} / b_{n}<2 L$. So consider the sums $\sum_{n \geq N} a_{n}$ and $\sum_{n \geq N} b_{n}$. So, $\sum b_{n}$ converges if and only if $\sum_{n \geq N} b_{n}$ converges; but in the latter series, each $a_{n}<2 L \bar{b}_{n}$, so $\sum_{n \geq N} a_{n}<2 L \sum_{n \geq N} b_{n}$, and $\sum_{n \geq N} a_{n}$ converges.
Similarly, can show that if $\sum a_{n}$ converges, then so must $\sum b_{n}$.

Ratio Test If there exists r such that $a_{n+1} / a_{n}<r<1$ for $n \gg 0$, then $\sum a_{n}$ converges.
If there exists R such that $a_{n+1} / a_{n}>R>1$ for $n \gg 0$, then $\sum a_{n}$ diverges.
(If there exists $r<1$ such that there exists N such that for $n \geq N, a_{n+1} / a_{n}<r$, then $\sum a_{n}$ converges.) ($n \gg 0$ means "for n sufficiently large")

Proof Compare to geometric series.

Example Suppose that

$$
a_{n}=\frac{n-1}{n^{2}-2 n+1} .
$$

Then the ratio a_{n+1} / a_{n} is

$$
\begin{gathered}
a_{n+1} / a_{n}=\frac{n}{(n+1)^{2}-2(n+1)+1} \frac{n^{2}-2 n+1}{n-1} \\
=\frac{n}{(n+1)^{2}} \frac{(n-1)^{2}}{n}
\end{gathered}
$$

Professor Jeff Achter
which is $\frac{(n-1)^{2}}{(n+1)^{2}}$. Unfortunately, $\lim _{n \rightarrow \infty}($ that $)$ is 1 . So our tests can't decide the convergence of this series.

If instead, we took

$$
b_{n}=\frac{n-1}{n^{3}-2 n+1}
$$

then the limit of the ratio of successive terms is

