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Given a symbol ∑n≥0 an, calculate partial sums sN = ∑n≤N an, and say that ∑n≥0 an = L if and
only if limN→∞ sN = L.

Most important series is the geometric one. Consider ∑nα
n. This has a limit if |α| < 1. Key issue:

α 6= 1, then sN = ∑0≤n≤N αn is sN = αN−1
α−1 .

Series with positive terms.

Suppose all ai ≥ 0. Then either ∑ an = L for some finite L, or ∑ an = ∞.

Comparison test: Suppose 0 ≤ an ≤ bn for all n. Then

a. If ∑ bn converges, then so does ∑ an.

b. If ∑ an diverges, then so does ∑ bn.

Proof Let sN = ∑0≤n≤N an, tN = ∑0≤n≤N bn. Then {sN} and {tN} are monotone increasing
sequences. If ∑ bN converges, then the tN are bounded above (by ∑ bN).

Then {sN} is a bounded, nondecreasing sequence of numbers, thus {sN} has a limit, and ∑ an
exists.

Reverse direction left as exercise. (If sN unbounded, since tN ≥ sN , tN unbounded.)

Integral tests:

Suppose f : [1, ∞)→ R positive, decreasing (nonincreasing) function, f |[1,N) integrable.

Theorem ∑n≥1 f (n) converges if and only if
∫∞

1 f (t)dt is finite.

(Recall that
∫∞

1 f (t)dt means limN→∞ ∫ N
1 f (t)dt.)

Sketch. For x ∈ [n, n + 1],

f (n) ≥ f (x) ≥ f (n + 1)

f (n) ≥
∫ n+1

n
f (x)dx ≥ f (n + 1)

Then

∑
1≤n≤N

f (n) ≥
∫ N+1

1
f (x)dx ≥ ∑

2≤n≤N+1
f (n).

(Key:
∫ N+1

1 f (x)dx = ∑1≤n≤N
∫ n+1

n f (x)dx.) Now take limN→∞ of everything. If ∑n≥1 f (n) di-
verges, then so does ∑2≤n f (n), and then

∫ N+1
1 f (x)dx gets arbitrarily large as N → ∞.

Corollary Suppose p ∈ R. Then ∑n≥1 np converges ⇐⇒ p < −1.
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Proof Consider f (x) = xp and its antiderivative:

F(x) =

{
xp+1

p+1 p 6= −1

ln(x) p = −1

(Of course, F(x) + c is also an antiderivative for f , for any constant c; but
∫ b

a F(x)dx =
∫ b

a (F(x) +
c)dx )

Then ∫ N

1
f (x)dx =

{
Np+1

p+1 −
1

p+1 p 6= −1

ln(N) p = −1

From this, we see that limN→∞ ∫ N
1 f (x)dx is finite if and only if p < −1.

Limit comparison test: Suppose {an} and {bn} are positive sequences. Suppose limn→∞ an/bn = L
exists and is positive (and finite). Then ∑ an converges if and only if ∑ bn converges.

Proof There exists N such that for n ≥ N, L/2 < an/bn < 2L. So consider the sums ∑n≥N an
and ∑n≥N bn. So, ∑ bn converges if and only if ∑n≥N bn converges; but in the latter series, each
an < 2Lbn, so ∑n≥N an < 2L ∑n≥N bn, and ∑n≥N an converges.

Similarly, can show that if ∑ an converges, then so must ∑ bn.

Ratio Test If there exists r such that an+1/an < r < 1 for n� 0, then ∑ an converges.

If there exists R such that an+1/an > R > 1 for n� 0, then ∑ an diverges.

(If there exists r < 1 such that there exists N such that for n ≥ N, an+1/an < r, then ∑ an con-
verges.) (n� 0 means “for n sufficiently large”)

Proof Compare to geometric series.

Example Suppose that

an =
n− 1

n2 − 2n + 1
.

Then the ratio an+1/an is

an+1/an =
n

(n + 1)2 − 2(n + 1) + 1
n2 − 2n + 1

n− 1

=
n

(n + 1)2
(n− 1)2

n
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which is (n−1)2

(n+1)2 . Unfortunately, limn→∞ (that) is 1. So our tests can’t decide the convergence of this
series.

If instead, we took

bn =
n− 1

n3 − 2n + 1
,

then the limit of the ratio of successive terms is

Professor Jeff Achter 3 418 Advanced Calculus II
Spring 2010


