> Homework 7
> Due: Friday, March 26

1. The goal of this problem is to study the convergence of

$$
\begin{equation*}
\sum_{n \geq 1} \frac{\sin (n)}{n^{p}} \tag{1}
\end{equation*}
$$

In this problem, do not use the bounds from class on $\sum^{N} \sin (n \theta)$.
(a) Using the identity

$$
2 \sin \alpha \sin \beta=\cos (\alpha-\beta)-\cos (\alpha+\beta)
$$

show that

$$
\sum_{1 \leq n \leq N} 2 \sin (n) \sin \left(\frac{1}{2}\right)=\cos \left(1-\frac{1}{2}\right)-\cos \left(N+\frac{1}{2}\right) .
$$

(b) Show that there is a constant C such that for all N,

$$
\left|\sum_{1 \leq n \leq N} 2 \sin (n) \sin \left(\frac{1}{2}\right)\right|<C
$$

(c) For which p does $\sum_{n \geq 1} \frac{\sin (n)}{n^{p}}$ converge?
2. Continuation of (1). The goal of this problem is to show that sometimes the convergence in (1) is conditional.

Consider the series $\sum \alpha_{n}$ and $\sum \beta_{n}$ given by

$$
\begin{aligned}
& \alpha_{n}=\frac{|\sin (n)|-|\sin (n-1)|}{2 n} \\
& \beta_{n}=\frac{|\sin (n)|+|\sin (n-1)|}{2 n} .
\end{aligned}
$$

(a) Show that $\sum_{n \geq 1} \alpha_{n}$ converges. (HINT: Dirichlet again!)
(b) Use the identity

$$
\sin (\alpha-\beta)=\sin (\alpha) \cos (\beta)-\cos (\alpha) \sin (\beta)
$$

to show that for all $x, \sin (1) \leq|\sin (x)|+|\sin (x-1)|$. (Hint: Use $\beta=x-1$.)
(c) Show that $\sum_{n \geq 1} \beta_{n}$ diverges.
(d) Show that $\sum_{n \geq 1} \frac{|\sin (n)|}{n}$ diverges. (Hint: What is $\alpha_{n}+\beta_{n}$?)
3. In this problem, you'll need a tiny bit of information about complex numbers:

- There is an absolute value function \mathbb{C} which extends the usual one, and still satisfies the triangle inequality; $|z+w| \leq|z|+|w|$.
- $i^{2}=-1$, and thus

$$
\begin{aligned}
i^{4 n+2} & =-1 \\
i^{4 n+3} & =-i \\
i^{4 n} & =1 \\
i^{4 n+1} & =i
\end{aligned}
$$

for all integers n.
Throughout this problem, suppose $\theta \in \mathbb{R}$.
(a) Show that

$$
e(z):=\sum_{n \geq 0} \frac{z^{n}}{n!}
$$

defines a function on all of \mathbb{C}. (Hint: It suffices to show that for any $z \in \mathbb{C}$, the (real, positive) series $\sum|z|^{n} / n!$ converges.)
(b) Show that

$$
\sum_{n \geq 0 \text { even }} \frac{(i \theta)^{n}}{n!}=\cos (\theta) .
$$

(HINT: Look up, or derive, the Taylor expansion of $\cos (\theta)$.)
(c) Show that

$$
\sum_{n \geq 0 \text { odd }} \frac{(i \theta)^{n}}{n!}=i \sin (\theta)
$$

(d) Show that

$$
e(i \theta)=\cos (\theta)+i \sin (\theta)
$$

Go read David Mumford's account of a bank with imaginary interest (page 21).
4. Let $\left\{\vec{v}^{(n)}\right\}_{n \geq 1}$ be a sequence of vectors in \mathbb{R}^{m}, and denote the coordinates of $\vec{v}^{(n)}$ by $v_{1}^{(n)}, \cdots, v_{m}^{(n)}$. Show that $\sum_{n \geq 1} \vec{v}^{(n)}$ exists if and only if, for each $i, \sum_{n \geq 1} v_{i}^{(n)}$ exists.
5. KFA7/XA//

