Homework 4 Due: Friday, February 19

1. Let $R \subset \mathbb{R}^2$ be the region

$$R = \{(x, y) : \frac{1}{2} < x^2 + y^2 < 2\}.$$
$$\vec{F} = (\frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2}).$$

Consider the vector field

- (a) $\frac{\partial}{\partial x}F_2 = \frac{\partial}{\partial y}F_1$ on *R*, but
- (b) \vec{F} is not integrable.
- 2. (a) [F] 5.8.4a. (HINT: *Green's theorem*.)
 - (b) [F] 5.8.4b. (HINT: Such a curve is contained in a circle.)

On Monday, we will define the spaces of *k*-forms $\mathcal{A}_k(R)$ on an open set *R* of some \mathbb{R}^n , and the (exterior) derivative $d : \mathcal{A}_k(R) \to \mathcal{A}_{k+1}(R)$. In particular, we will have:

$$\mathcal{A}_0(R) \xrightarrow{d} \mathcal{A}_1(R) \xrightarrow{d} \mathcal{A}_2(R)$$
 (*)

- 3. Show that if $f \in A_0(R)$, then $d \circ d(f) = 0$.
- 4. The diagram (*) is called exact if, for every $\omega \in A_1(R)$ such that $d\omega = 0$, there exists $f \in A_0(R)$ such that $df = \omega$.
 - (a) Suppose that *R* is simply connected. Show that (*) is exact.
 - (b) Let $R = \{(x, y) : \frac{1}{2} < x^2 + y^2 < 2\} \subset \mathbb{R}^2$. Show that (*) is *not* exact. (HINT: *See problem* 1.)

Professor Jeff Achter