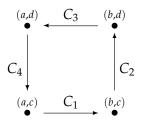
Homework 2 Due: Friday, Feburary 5

1. Prove Green's theorem in the special case where the domain *S* is a rectangle.

In somewhat more detail, consider the rectangle *S* with boundary $\partial S = \bigcup_{1 \le i \le 4} C_i$, as follows:



Let $\vec{F}(x, y) = (F_1(x, y), F_2(x, y))$. Remember, $\vec{F}d\vec{x} = F_1(x, y)dx + F_2(x, y)dy$.

- (a) Write down parametrizations for each curve C_i .
- (b) For each C_i , compute $\int_{C_i} F_1(x, y) dx$ and $\int_{C_i} F_2(x, y) dy$.
- (c) Compute $\iint_{S} \frac{\partial F_2}{\partial x} dx dy$ and $\iint_{S} \frac{\partial F_1}{\partial y} dx dy$.
- (d) Deduce Green's theorem:

$$\int_{\partial S} \vec{F} d\vec{x} = \iint_{S} \left(\frac{\partial F_2}{\partial x} - \frac{\partial F_1}{\partial y} \right) dx dy.$$

- 2. Let *S* be a regular region in \mathbb{R}^2 . Show that its area is $\int_{\partial S} x dy$. (HINT: *By definition, the area of S* is $\iint_{S} 1 \cdot dx dy$.)
- 3. [F] 5.2.1. (In other words, do problem #1 in section 5.2.)
- 4. [F] 5.3.3. (HINT: The book's parametrization gives a map $\vec{G} : \mathbb{R}^2 \to \mathbb{R}^3$, where the coordinates on \mathbb{R}^2 are ϕ and θ .)
- 5. [F] 5.4.8.

Professor Jeff Achter Professor Dan Rudolph