Homework 12
Due: Friday, May 7

1. [F]8.6.4ab 8.2.4ab.
2. [F]8.6.3.
3. [F]8.6.4. (In this problem, the odd and even extensions of ϕ are defined by:

$$
\begin{aligned}
\phi_{n}^{+}(x) & = \begin{cases}\phi(x) & x \in[0, \ell] \\
\phi(-x) & x \in[\ell, 0)\end{cases} \\
\phi_{n}^{-}(x) & = \begin{cases}\phi(x) & x \in[0, \ell] \\
-\phi(-x) & x \in[\ell, 0) .\end{cases}
\end{aligned}
$$

)
4. Consider the space of square-integrable functions ${ }^{1}$ on an interval $[a, b]$, and the following two notions of the "size" of a (real-valued) function:

$$
\begin{aligned}
\|f(x)\|_{\infty} & =\sup _{c \in[a, b]}|f(c)| \\
\|f(x)\|_{2} & =\sqrt{\langle f(x), f(x)\rangle} \\
& =\sqrt{\int_{a}^{b}|f(x)|^{2} d x}
\end{aligned}
$$

Let $\left\{f_{N}\right\}$ be a sequence of functions on $[a, b]$, and let f be a function on $[a, b]$. Suppose that $f_{N} \rightarrow f$ with respect to $\|\cdot\|_{\infty}$, i.e., that

$$
\lim _{N \rightarrow \infty}\left\|f_{N}-f\right\|_{\infty}=0
$$

Show that $f_{N} \rightarrow f$ with respect to $\|\cdot\|_{2}$, i.e., that

$$
\lim _{N \rightarrow \infty}\left\|f_{N}-f\right\|_{2}=0
$$

5. In the proof of Bessel's inequality in class, we showed that for $f(x) 2 \pi$-periodic and piecewise continuous,

$$
\left\|f(x)-f_{N}(x)\right\|_{2}^{2}=\|f(x)\|_{2}^{2}-\left\|f_{N}(x)\right\|_{2}^{2}
$$

where

$$
\begin{aligned}
f_{N}(x) & =\sum_{-N \leq n \leq N} c_{n}(f) \exp (i n x) \\
c_{n}(f) & =\langle f(x), \exp (i n x)\rangle .
\end{aligned}
$$

[^0]Suppose you know that $f_{N} \rightarrow f$ uniformly. Prove that Bessel's inequality is actually an equality, i.e., that

$$
\sum_{-\infty \leq n \leq \infty}\left|c_{n}\right|^{2}=\frac{1}{2 \pi}\|f(x)\|_{2}^{2}
$$

[^0]: ${ }^{1}$ Just assume that both f and its square are bounded and integrable, e.g., f is piecewise continuous and bounded.

