Homework 11 Due: Friday, April 30

1. Prove that the system of functions $\{\cos(mx), \sin(nx)\}_{n\in\mathbb{Z}}$ is orthogonal with respect to the inner product $\langle f, g \rangle = \int_0^{2\pi} f(x) \overline{g(x)} \, dx$. Explicitly, show that

$$\langle \cos(mx), \cos(nx) \rangle = \begin{cases} 0 & m \neq n \\ \pi & m = n \end{cases}$$
$$\langle \sin(mx), \sin(nx) \rangle = \begin{cases} 0 & m \neq n \\ \pi & m = n \end{cases}$$
$$\langle \sin(mx), \cos(nx) \rangle = 0$$

- 2. [F]8.1.3.
- 3. [F]8.1.4.
- 4. Denote the n^{th} Fourier coefficient of f by $c_n(f)$.
 - (a) Show that $c_n(f + g) = c_n(f) + c_n(g)$.
 - (b) Suppose $a \in \mathbb{R}$. Show that $c_n(af) = ac_n(f)$.

(HINT: These are easy if you're willing to use the inner-product formalism.)

5. [F] 8.2.2.