Homework 10

Due: Friday, April 16

1. [F] 7.3.10.
2. Prove the trigonometric identities

$$
\begin{aligned}
\cos (a+b) & =\cos (a) \cos (b)-\sin (a) \sin (b) \\
\sin (a+b) & =\cos (a) \sin (b)+\sin (a) \cos (b)
\end{aligned}
$$

in two different ways:
(a) Using the characterization $\exp (i x)=\cos (x)+i \sin (x)$; and
(b) Using the uniqueness (from class, Monday April 12) of solutions to the initial value problem

$$
\begin{aligned}
f^{\prime}(x) & =-g(x) \\
g^{\prime}(x) & =f(x) \\
f(0) & =a \\
g(0) & =b
\end{aligned}
$$

3. [F]7.4.1.

4. Let f be a differentiable function such that $f(x+y)=f(x) f(y)$ for all real x and y. Show that

$$
f^{\prime}(x)=f^{\prime}(0) f(x)
$$

(HINT: Calculate $f^{\prime}(x)$ using the definition of the derivative.)
5. Find power series expansions, valid on $(-1,1)$, for the following functions:
(a) $f(x)=\frac{1}{1-x^{2}}$;
(b) $g(x)=\frac{1}{(1-x)^{2}}$;
(c) $h(x)=\frac{1}{\left(1-x^{2}\right)^{2}}$.
(HINT: As a warmup for (b), calculate $\left(\sum_{n=0}^{5} x^{j}\right)^{2}$. If $N \geq j$, what is the coefficient of x^{j} in $\left(\sum_{n=1}^{N} x\right)^{2}$?)

