Homework 10 Due: Friday, April 16

1. [F] 7.3.10.

2. Prove the trigonometric identities

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$
$$\sin(a+b) = \cos(a)\sin(b) + \sin(a)\cos(b)$$

in two different ways:

- (a) Using the characterization $\exp(ix) = \cos(x) + i\sin(x)$; and
- (b) Using the uniqueness (from class, Monday April 12) of solutions to the initial value problem

$$f'(x) = -g(x)$$
$$g'(x) = f(x)$$
$$f(0) = a$$
$$g(0) = b$$

3. [F]7.4.1.

4. Let *f* be a differentiable function such that f(x + y) = f(x)f(y) for all real *x* and *y*. Show that

$$f'(x) = f'(0)f(x).$$

(HINT: Calculate f'(x) using the definition of the derivative.)

- 5. Find power series expansions, valid on (-1, 1), for the following functions:
 - (a) $f(x) = \frac{1}{1-x^2}$;
 - (b) $g(x) = \frac{1}{(1-x)^2};$
 - (c) $h(x) = \frac{1}{(1-x^2)^2}$.

(HINT: As a warmup for (b), calculate $(\sum_{n=0}^{5} x^{j})^{2}$. If $N \geq j$, what is the coefficient of x^{j} in $(\sum_{n=1}^{N} x)^{2}$?)