Homework 7
 Due: Friday, October 7

1. [F]2.2.1
2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function which is differentiable at $\vec{a} \in \mathbb{R}^{n}$. Suppose $\vec{u} \in \mathbb{R}^{n}$. Show that the directional derivative $\partial_{u} f$ vanishes at \vec{a}, i.e., that

$$
\partial_{\vec{u}} f(\vec{a})=0,
$$

if and only if \vec{u} is perpendicular to the gradient vector $\nabla f(\vec{a})$.
3. $[\mathrm{F}] 2.4 .1$
4. $[\mathrm{F}] 2.4$.2 (The book writes $\partial_{1} f(\mathbf{x})$ where we've been writing $\partial_{x_{1}} f(\vec{x})$ in class.)
5. [F]2.6.1

