Homework 14 Due: Friday, December 9

1. [F]4.2.2.

The *inner area* of a bounded set $A \subset \mathbb{R}^2$ is (the lower estimate)

 $\underline{I}_B(\chi_A),$

where *B* is a box containing *A*.

2. [F] 4.2.3.

3. [F]4.2.6.

4. Use the following fact:

Theorem If *Z* is a set of zero content, and *B* is a box in \mathbb{R}^2 containing *Z*, then $\iint_B \chi_Z = 0$. in the following:

(a) Suppose f is a bounded function on a set Z of zero content. Then

$$\iint_Z f = 0.$$

(Recall that $\iint_Z f$ means $\iint_B f \chi_Z$.)

(b) Suppose *f* and *g* are bounded and integrable on a box $B \subset \mathbb{R}^2$; and that there is a set $Z \subset B$ of zero content such that if $a \in B$ but $a \notin Z$ then f(a) = g(a). Show that

$$\iint_B f = \iint_B g.$$

I realize that I have promised some review problems, too. Please keep your eye on the web page for more information and advice.

Professor Jeff Achter Colorado State University Math 417 Advanced Calculus I Fall 2011