We're still in $\mathbb{Z}[i]$. We've shown that if p is a (usual) prime, then it is *not* a Gaussian prime if it's a sum of squares; equivalently, it's not a Gaussian prime if it's the norm of some $\alpha \in \mathbb{Z}[i]$ Ended last time with: If $\mathcal{N}(\alpha)$ is prime (in \mathbb{Z}), then α is irreducible in $\mathbb{Z}[i]$.

Lemma 1 + i irreducible, and 2 factors.

Proof $\mathcal{N}(1+i) = 1^2 + 1^2 = 2$ prime in \mathbb{Z} ; and 2 = (1+i)(1-i). We know: If *p* odd, and is *p* is a sum of squares, then $p \equiv 1 \mod 4$.

Lemma If $p \equiv 1 \mod 4$, then -1 is a square mod p.

Proof Use Wilson's lemma (p-1)!: Let p = 4N + 1. Then

$$-1 \equiv (4N)! \mod p$$

$$\equiv (1)(2)(3) \cdots (2N) \cdot ((2N+1) \cdot (2N+2) \cdots (4N)) \mod p$$

But $2N + 1 + 2N \equiv 0 \mod p$, (2N + 1) = -2N. Similarly, (2N + 2) = -(2N - 1), and so on; 4N = -1.

$$-1 \equiv (1 \cdot 2 \cdot 3 \cdots 2N)((-2N)(-(2N-1)) \cdots (-1)) \mod p$$
$$\equiv (2N)! \cdot (-1)^{2N} \cdot (2N)! \mod p$$

So, let m = (2N)!. Then $m^2 \equiv -1 \mod p$, and -1 is a square.

Lemma If p = 4N + 1 is a (usual) prime, then $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.

Proof Given *p*, we can find an *m*: $p|(m^2 + 1)$; so p|(m - i)(m + i). Moreover, $p \nmid m \pm i$. (Check: $\frac{m}{p} \pm \frac{i}{p} \notin \mathbb{Z}[i]$.) So *p* can't be irreducible in $\mathbb{Z}[i]$. ($p|\alpha\beta$, $p \nmid \alpha$, $p \nmid \beta$). From last week, $p = a^2 + b^2$ for some *a* and *b*.

Lemma If $p \equiv 3 \mod 4$, then -1 is *not* a square in \mathbb{Z}/p .

Professor Jeff Achter Colorado State University 1

M405 Number Theory Spring 2010

Proof Suppose $a^2 \equiv -1 \mod p$. Write p = 4N + 3; raise both sides to the 2N + 1 power:

$$a^{2} \equiv -1 \mod p$$
$$(a^{2})^{2N+1} \equiv (-1)^{2N+1} \mod p$$
$$a^{4N+2} \equiv -1 \mod p$$

But this is impossible! 4N + 2 = p - 1, so $a^{4N+2} \equiv 1 \mod p$.

At this point, we know that $p = \Box + \Box$ if and only if $p \equiv 1, 2 \mod 4$.

Theorem Let *N* be a natural number. Write $N = QM^2$, where *Q* is square-free. Then *N* is a sum of squares if and only if all primes dividing *Q* are 1 or 2 mod 4.

Proof Suppose $N = QM^2 = p_1p_2 \cdots p_jM^2$, each $p_j \equiv 1, 2 \mod 4$. From what we've just done, each $p_i = \Box + \Box$. moreover M^2 is a sum of squares; $M^2 = M^2 + 0^2$. From the first day of class, a product of a sum of (two) squares is again a sum of squares. Thus, $N = \Box + \Box$.

Conversely, suppose $N = \Box + \Box$. Write $N = p_1 \cdots p_j M^2$; need to show that each $p_j \equiv 1, 2 \mod 4$. Suppose some $p_i \neq 1, 2 \mod 4$. Since $p_i | N$, and N is a sum of squares $N = a^2 + b^2$, we have $p_i | a^2 + b^2$, and $a^2 + b^2 \equiv 0 \mod p_i$. Suppose $p_i \nmid a$ or $p_i \nmid b$; since if it does, then $p_i^2 | N$. Then

$$a^{2} + b^{2} \equiv 0 \mod p_{i}$$

$$a^{2} \equiv -b^{2} \mod p_{i}$$

$$a^{2}/b^{2} \equiv -1 \mod p_{i}$$

$$-1 \equiv \Box \mod p_{i}$$

Whoops – no need for proof by contradiction. What we've shown is that for each p_i , the fact that $N = \Box + \Box$ implies that $-1 \equiv \Box \mod p_i$; which means that $p_i \equiv 1, 2 \mod 4$.

1 Pythagorean triples

Suppose (a, b, c) is a primitive Pythagorean triple; $a^2 + b^2 = c^2$, and gcd(a, b, c) = 1. Then $c^2 = (a + bi)(a - bi)$.

Note: it's enough to assume gcd(a, b) = 1, since if d|a and d|b then $d|c^2$.

Lemma If *a* and *b* are relatively prime in \mathbb{Z} , they are relatively prime in $\mathbb{Z}[i]$.

Professor Jeff Achter
Colorado State University

2

Proof Suppose $\gamma \in \mathbb{Z}[i], \gamma | a, \gamma | b$. Then

$$a = \gamma \cdot a'$$
$$\mathcal{N}(a) = \mathcal{N}(\gamma) \cdot \mathcal{N}(a')$$
$$b = \gamma \cdot b'$$
$$\mathcal{N}(b) = \mathcal{N}(\gamma) \cdot \mathcal{N}(b')$$

 $\mathcal{N}(a) = a^2$, $\mathcal{N}(b) = b^2$; gcd(a, b) = 1 implies that $gcd(a^2, b^2) = 1$. So $\mathcal{N}(\gamma)|a^2$, $\mathcal{N}(\gamma)|b^2$, which means that $\mathcal{N}(\gamma) = 1$. Therefore, γ is a unit, and the only common divisors of a and b in $\mathbb{Z}[i]$ are units.

Lemma Suppose that *a* and *b* are relatively prime. Then a + bi and a - bi are relatively prime (as Gaussian integers).

Proof Let $\alpha = a + bi$; $\overline{\alpha} = a - bi$. Suppose $\beta | \alpha$ and $\beta | \overline{\alpha}$. Assume β irreducible, and then derive a contradiction.

Well, $\beta |\alpha, \beta| \overline{\alpha}; \beta |(\alpha + \overline{\alpha}); \beta |2a$. Similarly, $\beta |(\alpha - \overline{\alpha}); \beta |2b$.

 $\beta |2a, \beta|2b$. Since *a* and *b* are relatively prime, this forces $\beta |2$; so $\beta = \pm 1 \pm i$, and $\beta |a| pha$. Then $\overline{\beta} |\overline{\alpha}; \beta \overline{\beta} |\alpha \overline{\alpha}, \beta |\alpha \overline{\alpha}, \beta |\beta \rangle |\mathcal{N}(\alpha)|$. Then $\mathcal{N}(\alpha) = a^2 + b^2$ is even. But, if (a, b, c) is a primitive Pythagorean triple, then *c* is odd. (Check mod 4; if both *a* and *b* are even, then so is *c*, and (a, b, c) is not primitive; if both *a* and *b* are odd, then $a^2 + b^2 \equiv 2 \mod 4$; but 2 is not a square mod4, and thus $c^2 \not\equiv 2 \mod 4$.)

So we can't have an irreducible β dividing α and $\overline{\alpha}$, so α and $\overline{\alpha}$ are relatively prime in $\mathbb{Z}[i]$.

Lemma In $\mathbb{Z}[i]$, relatively prime factors of a square differ from squares by units.

In other words, if γ is \Box , and if $\alpha\beta = \gamma$, and $gcd(\alpha, \beta) = 1$, then α is (almost) a square.

Omitted; use unique factorization. The "differ by a square" part is like the fact that, in \mathbb{Z} , $36 = (-2^2) \cdot (-3^2)$; neither factor is a square, but they each differ from a square by a unit.

Back to our primitive pythagorean triple (a, b, c), let $\alpha = a + bi$, $\overline{\alpha} = a - bi$; $\alpha \overline{\alpha} = c^2$. Since $gcd(\alpha, \overline{\alpha}) = 1$, each of α and $\overline{\alpha}$ is a (unit times) a square.

In particular, $a - bi = \gamma \cdot (u - vi)^2$ for some $\gamma \in \mathbb{Z}[i]^{\times}$ and $u, v \in \mathbb{Z}$. So,

$$a - bi \in \{(u - vi)^2, -(u - vi)^2, i(u - vi)^2, -i(u - vi)^2\}$$
$$(u - vi)^2 = u^2 + v^2 - 2uvi$$

Professor Jeff Achter Colorado State University 3

M405 Number Theory Spring 2010 So, a - bi is one of $u^2 + v^2 - 2uvi$, $-u^2 - v^2 + 2uvi$, $i(u^2 + v^2) + 2uv$, etc. Equate real and imaginary parts of a - bi and $\gamma(u - vi)^2$, find that

$$\{a,b\} = \{\pm(u^2 + v^2), \pm 2uv\}$$

Which is the same description we'd had in week one of sums of squares! Moreover, any divisor of u and v is a divisor of $u^2 - v^2$ and 2uv, thus of a and b. So gcd(u, v) = 1.