We're still in $\mathbb{Z}[i]$. We've shown that if p is a (usual) prime, then it is not a Gaussian prime if it's a sum of squares; equivalently, it's not a Gaussian prime if it's the norm of some $\alpha \in \mathbb{Z}[i]$ Ended last time with: If $\mathcal{N}(\alpha)$ is prime (in \mathbb{Z}), then α is irreducible in $\mathbb{Z}[i]$.

Lemma $1+i$ irreducible, and 2 factors.

Proof $\mathcal{N}(1+i)=1^{2}+1^{2}=2$ prime in \mathbb{Z}; and $2=(1+i)(1-i)$.
We know: If p odd, and is p is a sum of squares, then $p \equiv 1 \bmod 4$.

Lemma If $p \equiv 1 \bmod 4$, then -1 is a square $\bmod p$.

Proof Use Wilson's lemma $(p-1)$!: Let $p=4 N+1$. Then

$$
\begin{aligned}
-1 & \equiv(4 N)!\bmod p \\
& \equiv(1)(2)(3) \cdots(2 N) \cdot((2 N+1) \cdot(2 N+2) \cdots(4 N)) \bmod p
\end{aligned}
$$

But $2 N+1+2 N \equiv 0 \bmod p,(2 N+1)=-2 N$. Similarly, $(2 N+2)=-(2 N-1)$, and so on; $4 N=-1$.

$$
\begin{aligned}
-1 & \equiv(1 \cdot 2 \cdot 3 \cdots 2 N)((-2 N)(-(2 N-1)) \cdots(-1)) \bmod p \\
& \equiv(2 N)!\cdot(-1)^{2 N} \cdot(2 N)!\bmod p
\end{aligned}
$$

So, let $m=(2 N)$!. Then $m^{2} \equiv-1 \bmod p$, and -1 is a square.

Lemma If $p=4 N+1$ is a (usual) prime, then $p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$.

Proof Given p, we can find an $m: p \mid\left(m^{2}+1\right)$; so $p \mid(m-i)(m+i)$.
Moreover, $p \nmid m \pm i$. (Check: $\frac{m}{p} \pm \frac{i}{p} \notin \mathbb{Z}[i]$.)
So p can't be irreducible in $\mathbb{Z}[i]$. $(p \mid \alpha \beta, p \nmid \alpha, p \nmid \beta)$. From last week, $p=a^{2}+b^{2}$ for some a and b.

Lemma If $p \equiv 3 \bmod 4$, then -1 is not a square in \mathbb{Z} / p.

Proof Suppose $a^{2} \equiv-1 \bmod p$. Write $p=4 N+3$; raise both sides to the $2 N+1$ power:

$$
\begin{aligned}
a^{2} & \equiv-1 \bmod p \\
\left(a^{2}\right)^{2 N+1} & \equiv(-1)^{2 N+1} \bmod p \\
a^{4 N+2} & \equiv-1 \bmod p
\end{aligned}
$$

But this is impossible! $4 N+2=p-1$, so $a^{4 N+2} \equiv 1 \bmod p$.
At this point, we know that $p=\square+\square$ if and only if $p \equiv 1,2 \bmod 4$.

Theorem Let N be a natural number. Write $N=Q M^{2}$, where Q is square-free. Then N is a sum of squares if and only if all primes dividing Q are 1 or $2 \bmod 4$.

Proof Suppose $N=Q M^{2}=p_{1} p_{2} \cdots p_{j} M^{2}$, each $p_{j} \equiv 1,2 \bmod 4$. From what we've just done, each $p_{i}=\square+\square$. moreover M^{2} is a sum of squares; $M^{2}=M^{2}+0^{2}$. From the first day of class, a product of a sum of (two) squares is again a sum of squares. Thus, $N=\square+\square$.
Conversely, suppose $N=\square+\square$. Write $N=p_{1} \cdots p_{j} M^{2}$; need to show that each $p_{j} \equiv 1,2 \bmod 4$. Suppose some $p_{i} \not \equiv 1,2 \bmod 4$. Since $p_{i} \mid N$, and N is a sum of squares $N=a^{2}+b^{2}$, we have $p_{i} \mid a^{2}+b^{2}$, and $a^{2}+b^{2} \equiv 0 \bmod p_{i}$. Suppose $p_{i} \nmid a$ or $p_{i} \nmid b$; since if it does, then $p_{i}^{2} \mid N$. Then

$$
\begin{aligned}
a^{2}+b^{2} & \equiv 0 \bmod p_{i} \\
a^{2} & \equiv-b^{2} \bmod p_{i} \\
a^{2} / b^{2} & \equiv-1 \bmod p_{i} \\
-1 & \equiv \square \bmod p_{i}
\end{aligned}
$$

Whoops - no need for proof by contradiction. What we've shown is that for each p_{i}, the fact that $N=\square+\square$ implies that $-1 \equiv \square \bmod p_{i}$; which means that $p_{i} \equiv 1,2 \bmod 4$.

1 Pythagorean triples

Suppose (a, b, c) is a primitive Pythagorean triple; $a^{2}+b^{2}=c^{2}$, and $\operatorname{gcd}(a, b, c)=1$. Then $c^{2}=$ $(a+b i)(a-b i)$.
Note: it's enough to assume $\operatorname{gcd}(a, b)=1$, since if $d \mid a$ and $d \mid b$ then $d \mid c^{2}$.

Lemma If a and b are relatively prime in \mathbb{Z}, they are relatively prime in $\mathbb{Z}[i]$.

Proof Suppose $\gamma \in \mathbb{Z}[i], \gamma|a, \gamma| b$. Then

$$
\begin{aligned}
a & =\gamma \cdot a^{\prime} \\
\mathcal{N}(a) & =\mathcal{N}(\gamma) \cdot \mathcal{N}\left(a^{\prime}\right) \\
b & =\gamma \cdot b^{\prime} \\
\mathcal{N}(b) & =\mathcal{N}(\gamma) \cdot \mathcal{N}\left(b^{\prime}\right)
\end{aligned}
$$

$\mathcal{N}(a)=a^{2}, \mathcal{N}(b)=b^{2} ; \operatorname{gcd}(a, b)=1$ implies that $\operatorname{gcd}\left(a^{2}, b^{2}\right)=1$. So $\mathcal{N}(\gamma)\left|a^{2}, \mathcal{N}(\gamma)\right| b^{2}$, which means that $\mathcal{N}(\gamma)=1$. Therefore, γ is a unit, and the only common divisors of a and b in $\mathbb{Z}[i]$ are units.

Lemma Suppose that a and b are relatively prime. Then $a+b i$ and $a-b i$ are relatively prime (as Gaussian integers).

Proof Let $\alpha=a+b i ; \bar{\alpha}=a-b i$. Suppose $\beta \mid \alpha$ and $\beta \mid \bar{\alpha}$. Assume β irreducible, and then derive a contradiction.
Well, $\beta|\alpha, \beta| \bar{\alpha} ; \beta|(\alpha+\bar{\alpha}) ; \beta| 2 a$. Similarly, $\beta|(\alpha-\bar{\alpha}) ; \beta| 2 b$.
$\beta|2 a, \beta| 2 b$. Since a and b are relatively prime, this forces $\beta \mid 2$; so $\beta= \pm 1 \pm i$, and $\beta \mid a l p h a$. Then $\bar{\beta} \mid \bar{\alpha}$; $\beta \bar{\beta} \mid \alpha \bar{\alpha}$, and $\mathcal{N}(\beta) \mid \mathcal{N}(\alpha)$. Then $\mathcal{N}(\alpha)=a^{2}+b^{2}$ is even. But, if (a, b, c) is a primitive Pythagorean triple, then c is odd. (Check mod 4 ; if both a and b are even, then so is c, and ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) is not primitive; if both a and b are odd, then $a^{2}+b^{2} \equiv 2 \bmod 4$; but 2 is not a square $\bmod 4$, and thus $c^{2} \not \equiv$ $2 \bmod 4$.)
So we can't have an irreducible β dividing α and $\bar{\alpha}$, so α and $\bar{\alpha}$ are relatively prime in $\mathbb{Z}[i]$.

Lemma In $\mathbb{Z}[i]$, relatively prime factors of a square differ from squares by units.
In other words, if γ is \square, and if $\alpha \beta=\gamma$, and $\operatorname{gcd}(\alpha, \beta)=1$, then α is (almost) a square.
Omitted; use unique factorization. The "differ by a square" part is like the fact that, in $\mathbb{Z}, 36=$ $\left(-2^{2}\right) \cdot\left(-3^{2}\right)$; neither factor is a square, but they each differ from a square by a unit.
Back to our primitive pythagorean triple (a, b, c), let $\alpha=a+b i, \bar{\alpha}=a-b i ; \alpha \bar{\alpha}=c^{2}$. Since $\operatorname{gcd}(\alpha, \bar{\alpha})=1$, each of α and $\bar{\alpha}$ is a (unit times) a square.
In particular, $a-b i=\gamma \cdot(u-v i)^{2}$ for some $\gamma \in \mathbb{Z}[i]^{\times}$and $u, v \in \mathbb{Z}$.
So,

$$
\begin{aligned}
a-b i & \in\left\{(u-v i)^{2},-(u-v i)^{2}, i(u-v i)^{2},-i(u-v i)^{2}\right\} \\
(u-v i)^{2} & =u^{2}+v^{2}-2 u v i
\end{aligned}
$$

So, $a-b i$ is one of $u^{2}+v^{2}-2 u v i,-u^{2}-v^{2}+2 u v i, i\left(u^{2}+v^{2}\right)+2 u v$, etc.
Equate real and imaginary parts of $a-b i$ and $\gamma(u-v i)^{2}$, find that

$$
\{a, b\}=\left\{ \pm\left(u^{2}+v^{2}\right), \pm 2 u v\right\}
$$

Which is the same description we'd had in week one of sums of squares! Moreover, any divisor of u and v is a divisor of $u^{2}-v^{2}$ and $2 u v$, thus of a and b. So $\operatorname{gcd}(u, v)=1$.

