February 24, 2010

We're still in Z[i]. We've shown that if p is a (usual) prime, then it is not a Gaussian prime if it’s a
sum of squares; equivalently, it’s not a Gaussian prime if it’s the norm of some « € Z[i] Ended last
time with: If N'(«) is prime (in Z), then « is irreducible in Z[i].

Lemma 1 +iirreducible, and 2 factors.

Proof N(1+i)=12+412=2primeinZ;and 2 = (1+1i)(1 —1).

We know: If p odd, and is p is a sum of squares, then p = 1 mod 4.
Lemma If p =1 mod 4, then —1 is a square mod p.

Proof Use Wilson’s lemma (p — 1)!: Let p = 4N + 1. Then

—1=(4N)!'mod p
=(1)(2)(8)---(2N) - ((2N+1)-(2N+2)---(4N)) mod p

But 2N +1+2N = O0mod p, (2N + 1) = —2N. Similarly, (2N +2) = —(2N — 1), and so on;
4N = —1.

—1=(1-2-3---2N)((=2N)(=(2N = 1)) --- (=1)) mod p
(2N)!- (=1)?N. (2N)! mod p

So, let m = (2N)!. Then m* = —1 mod p, and —1 is a square. O
Lemma If p = 4N + 1is a (usual) prime, then p = a® + b? for some a,b € Z.

Proof Given p, we can find an m: p|(m? + 1); so p|(m —i)(m +1).
Moreover, p  m =i . (Check: = % ¢ Zli].)

So p can’t be irreducible in Z[i]. (p|af, p t &, p { B). From last week, p = a? + b? for some a and b.

Lemma If p =3 mod 4, then —1 is not a square in Z/ p.
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Proof Suppose a?> = —1 mod p. Write p = 4N + 3; raise both sides to the 2N + 1 power:

a*> = —1mod p
(a2)2N+1 = (_1)2N+1 mod p
a*N*t2 = —1mod p
But this is impossible! 4N +2 = p — 1,50 a*N*2 = 1 mod p. O

At this point, we know that p = [0+ O if and only if p = 1,2 mod 4.

Theorem Let N be a natural number. Write N = QM?, where Q is square-free. Then N is a sum
of squares if and only if all primes dividing Q are 1 or 2 mod4.

Proof Suppose N = QM? = pip2--- ijz, each p; = 1,2 mod 4. From what we’ve just done,
each p; = 0+ . moreover M? is a sum of squares; M? = M? + 02. From the first day of class, a
product of a sum of (two) squares is again a sum of squares. Thus, N = O+ .

Conversely, suppose N = [J+ [J. Write N = py - - - p]-Mz; need to show that each p; = 1,2 mod 4.
Suppose some p; # 1,2 mod 4. Since p;|N, and N is a sum of squares N = a? + b?, we have
pila®* 4+ b?, and a® + b* = 0 mod p;. Suppose p; 1 a or p; 1 b; since if it does, then p?|N. Then

a* +b* = 0 mod p;

a* = —b* mod p;
a*/b* = —1 mod p;
—1 =0mod p;

Whoops — no need for proof by contradiction. What we’ve shown is that for each p;, the fact that
N = 0O+ O implies that —1 = [0 mod p;; which means that p; = 1,2 mod 4. O

1 Pythagorean triples
Suppose (a,b,c) is a primitive Pythagorean triple; a> + b*> = ¢2, and gcd(a,b,c) = 1. Then ¢ =

(a + bi)(a — bi).

Note: it’s enough to assume gcd(a, b) = 1, since if d|a and d|b then d|c?.

Lemma If g and b are relatively prime in Z, they are relatively prime in Z][i].
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Proof Suppose y € Z[i], y|a, y|b. Then

a=vy-a
N(a)=N(y) - N(a)
b=vy-V
N() =N(y) - N(V)

N(a) = a?, N(b) = b* gcd(a,b) = 1 implies that gcd (a2, b?) = 1. So N (y)|a?, N (y)|b?, which
means that AV (y) = 1. Therefore, y is a unit, and the only common divisors of @ and b in Z[i] are
units. ]

Lemma Suppose thata and b are relatively prime. Then a + bi and a — bi are relatively prime (as
Gaussian integers).

Proof Leta = a+ bi; @ = a — bi. Suppose B|a and B|a&. Assume f irreducible, and then derive a
contradiction.

Well, Bla, B|a; B|(x+ &); B|2a. Similarly, B|(« — &); 3|2b.

3|24, 3|2b. Since a and b are relatively prime, this forces 3|2; so 3 = 1 +i, and B|alpha. Then B|x;
BBlax, and N (B)|N (). Then N («) = a® + b? is even. But, if (a,b, c) is a primitive Pythagorean
triple, then c is odd. (Check mod 4; if both 2 and b are even, then so is ¢, and (a,b,c) is not primitive;

if both a4 and b are odd, then 4% + b> = 2 mod 4; but 2 is not a square mod4, and thus 2 £
2 mod 4.)

So we can’t have an irreducible 3 dividing « and &, so « and @ are relatively prime in Z[i]. O

Lemma In Z[i], relatively prime factors of a square differ from squares by units.

In other words, if v is [J, and if «f = v, and ged(«, B) = 1, then « is (almost) a square.

Omitted; use unique factorization. The “differ by a square” part is like the fact that, in Z, 36 =
(—22) - (=32); neither factor is a square, but they each differ from a square by a unit.

Back to our primitive pythagorean triple (a,b,c), let « = a+bi, ®« = a — bi; ax = c2. Since
ged(a, @) = 1, each of o and @ is a (unit times) a square.

In particular, a — bi = y - (u — vi)? for some y € Z[i]* and u,v € Z.
So,

a—bi € {(u—0i)? —(u—0vi)?i(u—0oi)? —i(u—ovi)?*}

2

(u —0i)? = u® 4+ v* — 2uvi
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So, a — bi is one of u? + v* — 2uvi, —u? — v* + 2uvi, i(u® + v*) + 2uv, etc.

Equate real and imaginary parts of a — bi and y(u — vi)?, find that

{a,b} = {£(u® +v?), F2uv}

Which is the same description we’d had in week one of sums of squares! Moreover, any divisor of
u and v is a divisor of u? — v? and 2uv, thus of a and b. So gcd (u,v) = 1.
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