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We’re still in Z[i]. We’ve shown that if p is a (usual) prime, then it is not a Gaussian prime if it’s a
sum of squares; equivalently, it’s not a Gaussian prime if it’s the norm of someα ∈ Z[i] Ended last
time with: If N (α) is prime (in Z), thenα is irreducible in Z[i].

Lemma 1 + i irreducible, and 2 factors.

Proof N (1 + i) = 12 + 12 = 2 prime in Z; and 2 = (1 + i)(1− i) .

We know: If p odd, and is p is a sum of squares, then p ≡ 1 mod 4.

Lemma If p ≡ 1 mod 4, then −1 is a square mod p.

Proof Use Wilson’s lemma (p− 1)!: Let p = 4N + 1. Then

−1 ≡ (4N)! mod p
≡ (1)(2)(3) · · · (2N) · ((2N + 1) · (2N + 2) · · · (4N)) mod p

But 2N + 1 + 2N ≡ 0 mod p, (2N + 1) = −2N. Similarly, (2N + 2) = −(2N − 1), and so on;
4N = −1.

−1 ≡ (1 · 2 · 3 · · · 2N)((−2N)(−(2N − 1)) · · · (−1)) mod p

≡ (2N)! · (−1)2N · (2N)! mod p

So, let m = (2N)!. Then m2 ≡ −1 mod p, and −1 is a square.

Lemma If p = 4N + 1 is a (usual) prime, then p = a2 + b2 for some a, b ∈ Z.

Proof Given p, we can find an m: p|(m2 + 1); so p|(m− i)(m + i).

Moreover, p - m± i . (Check: m
p ±

i
p 6∈ Z[i].)

So p can’t be irreducible in Z[i]. (p|αβ, p - α, p - β). From last week, p = a2 + b2 for some a and b.

Lemma If p ≡ 3 mod 4, then −1 is not a square in Z/p.
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Proof Suppose a2 ≡ −1 mod p. Write p = 4N + 3; raise both sides to the 2N + 1 power:

a2 ≡ −1 mod p

(a2)2N+1 ≡ (−1)2N+1 mod p

a4N+2 ≡ −1 mod p

But this is impossible! 4N + 2 = p− 1, so a4N+2 ≡ 1 mod p.

At this point, we know that p = �+� if and only if p ≡ 1, 2 mod 4.

Theorem Let N be a natural number. Write N = QM2, where Q is square-free. Then N is a sum
of squares if and only if all primes dividing Q are 1 or 2 mod4.

Proof Suppose N = QM2 = p1 p2 · · · p j M2, each p j ≡ 1, 2 mod 4. From what we’ve just done,
each pi = �+�. moreover M2 is a sum of squares; M2 = M2 + 02. From the first day of class, a
product of a sum of (two) squares is again a sum of squares. Thus, N = �+�.

Conversely, suppose N = �+�. Write N = p1 · · · p j M2; need to show that each p j ≡ 1, 2 mod 4.
Suppose some pi 6≡ 1, 2 mod 4. Since pi|N, and N is a sum of squares N = a2 + b2, we have
pi|a2 + b2, and a2 + b2 ≡ 0 mod pi. Suppose pi - a or pi - b; since if it does, then p2

i |N. Then

a2 + b2 ≡ 0 mod pi

a2 ≡ −b2 mod pi

a2/b2 ≡ −1 mod pi

−1 ≡ � mod pi

Whoops – no need for proof by contradiction. What we’ve shown is that for each pi, the fact that
N = �+� implies that −1 ≡ � mod pi; which means that pi ≡ 1, 2 mod 4.

1 Pythagorean triples

Suppose (a, b, c) is a primitive Pythagorean triple; a2 + b2 = c2, and gcd(a, b, c) = 1. Then c2 =
(a + bi)(a− bi).

Note: it’s enough to assume gcd(a, b) = 1, since if d|a and d|b then d|c2.

Lemma If a and b are relatively prime in Z, they are relatively prime in Z[i].
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Proof Suppose γ ∈ Z[i], γ|a, γ|b. Then

a = γ · a′

N (a) = N (γ) · N (a′)
b = γ · b′

N (b) = N (γ) · N (b′)

N (a) = a2, N (b) = b2; gcd(a, b) = 1 implies that gcd(a2, b2) = 1. So N (γ)|a2, N (γ)|b2, which
means that N (γ) = 1. Therefore, γ is a unit, and the only common divisors of a and b in Z[i] are
units.

Lemma Suppose that a and b are relatively prime. Then a + bi and a− bi are relatively prime (as
Gaussian integers).

Proof Letα = a + bi;α = a− bi. Suppose β|α and β|α. Assume β irreducible, and then derive a
contradiction.

Well, β|α, β|α; β|(α +α); β|2a. Similarly, β|(α −α); β|2b.

β|2a,β|2b. Since a and b are relatively prime, this forcesβ|2; soβ = ±1± i, andβ|alpha. Thenβ|α;
ββ|αα, and N (β)|N (α). Then N (α) = a2 + b2 is even. But, if (a, b, c) is a primitive Pythagorean
triple, then c is odd. (Check mod 4; if both a and b are even, then so is c, and (a,b,c) is not primitive;
if both a and b are odd, then a2 + b2 ≡ 2 mod 4; but 2 is not a square mod4, and thus c2 6≡
2 mod 4.)

So we can’t have an irreducible β dividingα andα, soα andα are relatively prime in Z[i].

Lemma In Z[i], relatively prime factors of a square differ from squares by units.

In other words, if γ is �, and ifαβ = γ, and gcd(α,β) = 1, thenα is (almost) a square.

Omitted; use unique factorization. The “differ by a square” part is like the fact that, in Z, 36 =
(−22) · (−32); neither factor is a square, but they each differ from a square by a unit.

Back to our primitive pythagorean triple (a, b, c), let α = a + bi, α = a − bi; αα = c2. Since
gcd(α,α) = 1, each ofα andα is a (unit times) a square.

In particular, a− bi = γ · (u− vi)2 for some γ ∈ Z[i]× and u, v ∈ Z.

So,

a− bi ∈ {(u− vi)2,−(u− vi)2, i(u− vi)2,−i(u− vi)2}
(u− vi)2 = u2 + v2 − 2uvi
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So, a− bi is one of u2 + v2 − 2uvi, −u2 − v2 + 2uvi, i(u2 + v2) + 2uv, etc.

Equate real and imaginary parts of a− bi and γ(u− vi)2, find that

{a, b} = {±(u2 + v2),±2uv}

Which is the same description we’d had in week one of sums of squares! Moreover, any divisor of
u and v is a divisor of u2 − v2 and 2uv, thus of a and b. So gcd(u, v) = 1.
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