We now exploit this give an upper bound for the number of primes all together. We'll prove this for the special case $X=2^{m}$. We have

$$
\begin{aligned}
\pi\left(2^{m}\right)-\pi\left(2^{m-1}\right) & \leq \frac{2^{m}}{\log }(2) \log \left(2^{m-1}\right)+O(1) \\
\pi\left(2^{m-1}\right)-\pi\left(2^{m-2}\right) & \leq \frac{2^{m-1} \log (2)}{\log \left(2^{m-2}\right.}+O(1) \cdots
\end{aligned}
$$

Therefore, if we add up the number of primes in all these intervals, we find

$$
\pi\left(2^{m}\right) \leq \sum_{j=2}^{m} \frac{2^{j}}{j-1}+O\left(\log \left(2^{m}\right)\right)
$$

I claim that there is a constant $C$ such that for all $m$,

$$
\pi\left(2^{m}\right) \leq C \frac{2^{m}}{m}+O(m)
$$

It suffices to show the following:

Claim Suppose $C>4$ is a constant such that for some $m_{0} \geq 3, \sum_{j=2}^{m_{0}} \frac{2^{j}}{j-1} \leq C \frac{2^{m_{0}}}{m_{0}}$. Then the same inequality holds for all $m \geq m_{0}$.
To prove this, we proceed by induction on $m$ : we have

$$
\begin{aligned}
\sum_{j=2}^{m+1} \frac{2^{j}}{j-1} & =\sum_{j=2}^{m} \frac{2^{j}}{j-1}+\frac{2^{m+1}}{m} \\
& \leq C \frac{2^{m}}{m}+\frac{2^{m+1}}{m} \\
& =\left(\frac{C}{2}+1\right) \frac{2^{m+1}}{m} \\
& =\frac{C+2}{2 m}(m+1) \frac{2^{m+1}}{m+1} \\
& \leq(C+2) \frac{2}{3} \frac{2^{m+1}}{m+1} \text { since } m \geq 3 \\
& \leq C \frac{2^{m+1}}{m+1} \text { since } C>4
\end{aligned}
$$

