10.3 An upper bound April 29, 2010
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We now exploit this give an upper bound for the number of primes all together. We'll prove this
for the special case X = 2". We have
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Therefore, if we add up the number of primes in all these intervals, we find
T
Z O(log(2"))

I claim that there is a constant C such that for all m,
m

2(2") < c% +0(m)

It suffices to show the following:

Claim Suppose C > 4 is a constant such that for some mg > 3, ¥™° szo Then the same

inequality holds for all m > my.
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To prove this, we proceed by induction on m: we have
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since m > 3
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