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DENSITY QUESTIONS IN ALGEBRAIC NUMBER THEORY 

L. J. GOLDSTEIN, University of Maryland 

Very often, the number theorist bases conjectures on empirical investiga- 
tions. Even before the invention of the electronic computer, number theorists 
spent much time doing calculations, the results of which suggested possibly true 
statements. After the empirical stage of his investigation is completed, the 
number theorist then tries to supply proofs for his conjectures. I t  is here where 
the number theorist applies a formidable armada of high-powered machinery, 
ranging from analytic function theory to algebraic geometry. I t  is most surpris- 
ing that  even the most innocently conceived conjecture may lead into a vast 
jungle of very difficult and technical mathematics. But such is the nature of 
number theory. In this lecture, I should like to discuss a set of conjectures which 
typify the process of number-theoretic creation as we have described i t :  These 
conjectures originate out  of empirical investigation and those few that  we are 
able to prove seem to lead us far afield for their proofs. 

1. Gauss' conjecture. Let us denote by Z the rational integers, p an odd 
prime, a an arbitrary integer, and 2: the group of nonzero residue classes mod p. 
Since Z,X is the multiplicative group of a finite field, a well-known result asserts 
that 22 is cyclic of order p-1. We say that a is a primitive root modulo f i  if 
(a, 9) =1 and if its residue class d in 2: is a generator of Z,X. 

LEMMA1.1. The number a is a primitive root modulo p if and only if (a, p) = 1 
and a v $  1 (modp) fo rv= l ,  2,  - , p -1 .  

Larry Goldstein received his Princeton PhD under G. Shimura in 1967. He was a Gibbs 
lecturer a t  Yale for two years before his present associate professorship at  Maryland. His main 
research is in analytic and algebraic number theory, and his book, Analytic Number Theory, is 
scheduled to appear. Editor. 
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Note that by Fermat's Little Theorem, if (a, p) = 1, then 

a"-' = 1 (mod p). 

From now on; let us fix a ,  and let us define 

a(a)  = ( p  I p is prime and a is a primitive root modulo p ] .  

I t  may be that  @(a) is empty. For example, if a is a perfect square, say x2, with 
(p, a) =1, then 

xp-I = 1 (mod p) 

by Fermat's Little Theorem, so that  

a(p1)I2= 1 (mod p). 

Therefore, if pdx, p odd, then p@ @,(a). However, if pI x, then i t  is certainly true 
that p@ @(a).Therefore, we have shown that  @(a) =@ if a is a perfect square. 
Moreover, since (- =+1, we see that  p @  a ( -  1) if p -1>2. Therefore, since 
-1is a primitive root modulo 3, we have proved that @(- 1)= ( 3 } . 

By means of laborious calculations, Gauss investigated the case a =  10 and 
arrived at the following conjecture, which is stated in Article 303 of his Dis- 
puisitiones A rithmeticae: 

CONJECTUREA: @(lo)is infinite. 

In the next sections, we shall present some heuristic evidence for this 
conjecture, a s  well as  some more general conjectures which seem to be true. 

2. Artin's conjecture. In a conversation with Hasse in 1927, Artin made the 
following conjecture: 

CONJECTURE -1 and not a perfect square. Then &(a) B: Suppose that a i s  not 
is injinite. 

This conjecture was not just a wild guess, but followed from a very com- 
pelling probabilistic argument which Artin advanced. In order to trace Artin's 
line of thought, we must first define a few notions. 

Let 8 be a set of primes (finite or infinite), and let x be a positive real number. 
Let n(x) denote the number of primes S x ,  and let n(x, S) denote the number 
of primes in S which are 6 x .  We say that  S has a (natural) density if 

lim T(X, S)/T(X) 
z -0  

exists. The  value of the limit is called the density of S and is denoted d(S). We 
clearly have 

Moreover, if d(S) >0,then S is infinite since n(x)+ w as x+ w . In a few moments 
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we shall reformulate Conjecture B in the form of a statement about densities. 
But first we must state some preliminary information about algebraic number 
theory. 

Let K be an algebraic number field, tha t  is, a finite, algebraic extension of Q. 
Let D be the ring of integers of K ,  that  is, the integral closure of Z in K. If p 
is an ordinary prime, then p D  is an  ideal of $3, but  is usually no longer a prime 
ideal. However, p D  can be written as  a product of powers of prime ideals of D 
(since D is a Dedekind domain): 

I t  is a general fact from algebraic number theory that  gSdeg(K/Q). We say 
that  p splits completely in K if g =deg(K/Q). Here is a basic theorem which one 
meets in the analytical portion of algebraic number theory. 

THEOREM2.1 (Dirichlet). Let n= deg(K/Q) and let S denote the set of all 
primes which split completely in K. Then  S has a density and 

Let q be a prime and let Lq denote the splitting field over Q of the polynomial 
Xq-a. We get L, from Q in two steps. First we adjoin to Q a primitive qth root 
of unity c,. Then we adjoin to Q({,) any qth root of a ,  say the real value of allq. 
Then, 

(1) L, = ca<r,,allg>. 

L,/Q(f,) is a Galois extension of degree either 1 or q with cyclic Galois group. 
(The extension is a so-called Kummer extension.) Also, Q({,)/Q is a Galois 
extension of degree q- 1 with cyclic Galois group. Thus, L,/Q is a Galois exten- 
sion with solvable Galois group and 

depending on the value of a. 
From the tool box of the algebraic number theorist, we quote the following 

result: 

THEOREM 1 (mod q) and2.2. @ splits completely in L,wp = 
a ( ~ - ~ ) / qE 1 (mod q). 

Combined with Lemma 1.1, this yields the follo~ving : 

THEOREM2.3. a i s  a primitive root modulo 9 if and only if for each prime q,  
the prime p does not split completely in L,. 

For K an algebraic number field, let Spl(K) denote the set of all primes which 
split completely in K ;  let 8 denote the set of all primes. Then, by Theorem 2.3, 
we can assert the following: 
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Now for Artin's probabilistic argument: By Dirichlet's theorem, Spl(L,)  bas 
a density and d(Spl(L , ) )  = l / deg (L , /Q) .  Therefore,6 -Spl(L,)  has a density and 

Therefore, from Corollary 2.4, we might guess tha t  a ( a )  has a density and that  

Let us see how (*) fits in with Conjecture B. First of all, i t  is easy to check 
that  if a $-1 then n ( q )=q(q-1)  for all but  a finite number of q. Therefore, the 
product converges for a#  -1. For a= -1 ,  the product diverges to 0. Thus, if 
a # -1,  the product can converge to 0 if and only if one of the factors =0, and 
this in turn if and only if n ( q )=1 for some q. But i t  is trivial to check that  
n ( q )Bq-l > 1 if q>2. Therefore, the product= 0 if and only if n ( 2 )= 1. But 
L2= Q(a112), so that  n ( 2 )=1 if and only if a is a perfect square. Therefore, we 
conclude tha t  if a f -1 and a # b2, then the product is positive, so that  d ( & ( a ) )  
>0,  which implies Conjecture B. 

Thus, the heuristic arguments of Artin seemed to fit the facts such as they 
were known a t  the time. However, experimental calculations by D. H. Lehrner 
cast a serious doubt as to whether the true value of the density of a ( a ) was given 
by (*). In the face of this disagreement between conjecture and evidence, i t  was 
necessary to reexamine the reasoning which led to (*). Let us consider the prob- 
abilistic event "H randomly chosen prime belongs to 6-Spl(L , ) ."  Dirichlet's 
Theorem may be interpreted as  saying that  the probability of this event is 
l / n ( q ) .  We then get the probability that  a randomly chosen prime belongs to 
the intersection of all 6 -Spl(L,)  by multiplying the corresponding probabilities. 
This is valid, a s  every student of probability ltnows, only when the events are 
pairwise independent. Therefore, what probably goes wrong is that  something 
analogous to probabilistic independence is violated. Of course, all of our analo- 
gies with probability theory are only of heuristic value. But they seem to lead 
somewhere in this case! For, upon close inspection, we see tha t  the fields L, are 
not "independent" of one another, that  is, it is not true that  L q n L , t = Q  for 
q#qt. Therefore, if we wish to  make a statement like (*), i t  is necessary to some- 
how take into account this dependence, 

By Corollary 2.4, 
@(a)= 6 - U Sp l (Lq) .  

'2 

Note, however, tha t  the primes which split completely in two fields L, and L,, 
are subtracted twice on the right hand side of (3) .  In an at tempt to count each 
prime in @ ( a )once and only once, let us add back in those primes which were 
removed twice to get 
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In adding the last term, however, we have counted twice the primes which 
split completely in three fields Lql, L,,, L,,. Therefore, let us correct this by 
writing 

qi lqa ,qa  
qi  distinct 

But now the primes which split completely in four fields have been subtracted 
twice, so we must add them back in, and the process continues. Eventually, we 
arrive a t  a formula for &(a) in which each prime is counted exactly once. If 
pl, pz, . . , pr are distinct primes, k =ql . .p,, let us define b to be the com-
posite 

Then 

Therefore, we may write our formula for &(a) in the form 

a(a) = 6 - U Spl(L,) + U Spl(Lqlq,) 
Q 91.92 

q i  distinct 
(3) 

- u S P ~ ( L , , , , , , ) + . ~ ~ .  
4 1 ~ 9 2 ~ 4 1  

q i  distinat 

We have defined Lk for each positive, square-free integer. Let n(k) =deg(Lh/Q). 
Then by Dirichlet's Theorem and (3) ,  we can conjecture that  

(4) d(a(a)) = 1- 44)-I + n(qlqz)-I - . . . . 
0 QllPa 

q i  distinot 

By rewriting the right hand side of (4),we derive the following conjecture: 

CONJECTUREC: &(a) has a nutural density, and 

where p(k) denotes the Mb'biusfunction and the sum runs over all positive spuare-
free integers k (including 1). 

I t  is Conjecture C that  agrees with the experimental evidence. Note, how-
ever, that from the form of the sum in Conjecture C, i t  is no longer evident that  
d(&(a))> O  if af  -1 and aZb2.  Also, i t  must be checked that  the series con-
verges. Both points are answered by the following theorem. 
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THEOREM2.5 (Hooley [3]). Let k be a positive square-free integer, let h denote 
the largest positive integer such that a i s  a n  h-th power, and let 

k1 = k / ( h ,  k), 
al 	= the square-jree part of a, 

C 2 if k i s  divisible by 2al and al = 1 (mod 4 )
e(k) = 

1 otherwise. 

Then n ( k )  =kl$~(k) /e(k) ,where #~(k)denotes Euler'sfunction. 

As an  immediate consequence of Hooley's theorem, we deduce two corollaries. 

COROLLARY2.6. The s u m z  p ( k ) / n ( k )  converges absolutely. 
k 


COROLLARY2.7. If k and a are relatively prime, then 

Using Hooley's theorem, we can write the sum of Conjecture C as a product, 
so that  we may revise Conjecture C as follows: 

CONJECTURED: @(a)has a natural density and 

(C(k ) ,  a1 jf 1 (mod 4) 

where 

C(k )  = IT (1  - ( q  - I)-') (1  - 4(q?)-'>. 
qlh 	 4 t h  

This is our final form of Artin's conjecture. Implicit in the statement of 
Conjecture D is the statement that  if a #  -1and a is not a perfect square, then 
d ( B ( a ) )>0. For then I all # 1. Since C(k)>0, we see that  (mod Conjecture D )  

d ( a ( a ) )  = 0 -al = 1 (mod 4 )  and p(  I al 1) = 1 

and 

The  last of the three conditions on the right can be satisfied only when I all =1, 
2, or 3. But of these three possibilities only Iall =1 is consistent with the remain- 
ing two conditions. Therefore Conjecture D implies 

d ( a ( a ) )  = 0 - 1 al 1 = 1 
( 5 )  	 - a = - 1  or a = b 2 .  
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3. Bilharz's Theorem. Let k be a finite field with p elements, k [ t ]  the ring of 
polynomials over k in an  indeterminate t ,  and K = k ( t )  the field of rational 
functions in t with coefficients in K. The  field K is the simplest example of an 
algebraic function in one variable. The arithmetic properties of such fields 
parallel the arithmetic of Q, with k [ t ]  playing the role of the rational integers. 
In  many ways, the arithmetic of K is even simpler than that  of 2,so that  often 
number theorists use function fields as a testing ground for conjectures about the 
rational integers. This testing process consists of reformulating a problem about 
Q or Z into an analogous problem about K or k [ t  1, respectively, and then solving 
the analogous problem. 

In  1935, Bilharz [I], a student of Hasse, formulated and proved the ana- 
logue of Artin's conjecture. The  role of the rational primes is played by the 
monic, irreducible polynomials ~ € k [ t ] .  If P is such a polynomial, then the 
norm of P ,  denoted NP, is defined by 

The  quotient ring 

Kp = k [ t ] / ~ k [ t ] ,  P monic, irreducible, 

is a finite field with NP elements. The  multiplicative group K$ of KP is cyclic. 
Suppose that  A E K  is not divisible by P. We say that  A is a primitive root 
modulo P if A mod P k  [ t  ] generates KpX. Given A EK, we can define 

a(A)= { P I A is a primitive root modulo PI. 

I t  is easy to check that  if A is an r-th power for some r dividing q-1, then 
a ( A )=@. In analogy with the situation in Q, we can formulate a conjecture. 

CONJECTURE 1, thenA': If A i s  not an r-th power for any prime r dividing q-

@ ( A )is injinite. 


Conjecture At was proved in the cited work of Bilharz. The  most interesting 
feature of Bilharz's paper is that  he proves Conjecture At only by assuming a 
deep result, a t  the time conjectured but not proved, known as the "Riemann 
hypothesis for function fields over finite fields." The  conjecture was settled by 
AndrC Weil in 1941 [4], so that  the gap in Bilharz's argument was filled. 

Let So be the set of all monic, irreducible polynomials in k[ t ] ,  and let x 2 0. 
For SCSO, define 

We say that  S has a natural density if 

lim -
rK(x) 
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exists. We can formulate the analogues of the density conjectures in the func- 
tion field case. However, the situation here is very much different from the 
preceding case. The set a ( A ) usually does not have a natural density. However, 
i t  is possible to define a new concept of density (Dirichlet density) with respect 
to which the analogues of the density conjectures are true. The proofs of these 
results are contained in Bilharz's paper. 

4. Hooley's Theorem. Let L be an algebraic number field. If 8 is an ideal of 
the ring of integers DL,the norm of 3denoted N8, is the number of elements in 
the (finite) ring DL/%.The Dedekind zeta function of L is defined by 

r&) = CNW-,
8 

where W runs over all ideals of OKand s is a complex variable. The series on the 
right converges absolutely for Re(s) >1. Moreover, for s in this half-plane, 

where p runs over all prime ideals of DL.The product of (6) converges absolutely 
for Re(s) >1. Therefore, 

(7) r&(s)#O (Re(s )> l ) .  

I t  is possible to show that CL(S) can be analytically continued to a meromorphic 
function on the whole s-plane. The continued function (also denoted CL(S)) has 
only one pole, a simple pole a t  s =1 with residue 1. Moreover, rz, (s) satisfies a 
functional equation connecting its behavior a t  s with its behavior a t  1 -s. One 
consequence of this functional equation is that the zeros of r ~ ( s )  in the half- 
plane Re(s) <0 are known. These zeros are called trivial zeros. By (7), all nontriv- 
ial zeros of SL(S) lie in the strip 

There is strong evidence in favor of the following conjecture. 

CONJECTURE lie on the (Riemann Hypothesis): All nontrivial zeros of ~ L ( S )  
line Re(s) =1/2. 

The special case L =Q of this celebrated conjecture was first stated by Riemann 
in 1860. Although the Riemann hypothesis has received the attention of many 
of the greatest mathematicians of the last 100 years, i t  remains unproved, and is 
one of the most significant unsolved problems of contemporary mathematics. 

There is a link between the Riemann hypothesis and Conjecture C (the most 
general form of Artin's conjecture)-namely, Hooley [3], has proved the ana- 
logue of Bilharz's theorem: 

THEOREM4.1. Assume that the Riemann hypothesis is true for each of thejields 
Lk.Then Conjecture C is true. 
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5. Analogues of Artin's conjecture. I t  is possible t o  generalize the ,heuristic 
argument which gave rise to Conjecture C: Suppose that  S is a set  of rational 
primes, and suppose that  for each qES  there is given a number field L,. Let  
c?, = a(s ,  { L,))  denote the set of rational primes which do not split completely 
in each L, for qES. Let us make a conjecture about the natural density of a. 

For k =ql . . . q,, p i e s ,  set 

Lk = LPI. . .L*,, 

n(k) = deg(Lk/Q). 

Define LI= Q, so that  n(1) =1. Using the same arguments as  in Paragraph 2, 
we can formulate another conjecture. 

CONJECTUREE: Suppose that 

converges, where the sum runs over all k for which n(k) is dejined. Then Q, has a 
natural density 

d(@) = C p(k)n(k)-'. 
k 

Conjecture E clearly contains Conjecture C as a special case, namely for 
S = {all rational primes), L, =Q(rq,a1/q) (q ES). There are only two special cases 
for which Coajecture E has been verified. When S is finite, Conjecture E can 
be easily checked using Dirichlet's theorem. When S is infinite, however, Con- 
jecture E is very difficult. The  only case known is now given. 

THEOREM5.1 (Goldstein [2 I). Suppose that 

L,2 Q(S-,z) 

holds for all but a jinite number of q ES.  Then Conjecture E is  true. I n  particular, 
Conjecture E is true if S = {all rational primes ) and 

Theorem 5.1 is tantalizingly close to Artin's conjecture. One might hope 
that  the methods used to prove Theorem 5.1 could be appropriately generalized 
to prove Artin's conjecture. However, i t  appears that  Conjecture E is of a 
much higher order of difficulty and any hopes in that  direction are overly opti- 
mistic. 

6. Conclusion. In this talk I have tried to  indicate how a number theorist 
comes by his conjectures. In some sense, the combination of intuition, deduc- 
tion, and heuristic arguments by means of which we have arrived a t  our con- 
jectures, is a typical way in which many mathematicians work. There is much 
that  we have been forced to omit. For example, i t  is possible to formulate Con- 



jecture E as a conjecture about Haar measure on a certain compact topological 
group. In  this formulation Conjecture E can be thought of as a generalization 
of Dirichlet's theorem to infinite-dimensional extensions L of Q.For an exposi- 
tion of this theory, the reader is referred to  [2]. If I have said little about 
methods of proof, it is because there are only a few theorems now proved in the 
subject. I hope that  this talk will generate enough interest to remedy this ap- 
palling situation. 

This paper is the text of an invited address delivered by the author under the title "On a 
Conjecture of Artin" a t  the Northeastern Sectional Meeting on June 20, 1969. 

Research supported by NSF Grant GP-13872. 
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MUSIMATICS or THE NUN'S FIDDLE* 

A. L. LEIGH SILVER, Fellow of the Institute of Musical Iiistrument Technology, England 

1. The divine ratio. "Abonzinalzdz~rnf'~said Cicero as he went a purler over a 
hidden obstacle-"quid est quodln--and scrabbling in the undergrowth he un- 
covered an ancient monument. The  lettering was illegible but the design-a 
cylinder circumscribing a sphere-was clearly that  which Archimedes, who was 
killed in the fall of Syracuse 212 B.c.,had charged his friends to inscribe on his 
tombstone. Since Cicero made this discovery about 75 B.c., the tomb has again 
been lost, probably forever. 

Archimedes transformed empirical knowledge into theoretical science and 
developed the integral calculus which he said would be used by mathematicians 
"as yet unborn." In  keeping with Aristotle's dictum that  "it is proper to con- 
sider the similar even in things far distant from each other," he considered i t  
highly significant that  the cylinder and inscribed sphere, as regards surface 

* A symbolic title with Chaucerian overtones. This one-stringed instrument, better known as 
the 'Marine Trumpet', has clarion qualities well suited for trans-Atlantic communication. 

A. L. Leigh Silver writes that he is a 3M man: medicine, music, and maths. Son of a profes- 
sional organist, he is an Oxford and London educated physician and presently is employed by the 
7520 U.S.A.F. Hospital. He is a fellow of the British Medical Association, Fellow of the Inst. of 
Musical Instrument Technology, and Hon. Fellow Mercator Music Foundation. Editor. 


