Homework 1
 Due: Monday, March 28

In class, on homework, and on exams, all vectors will be column vectors unless otherwise specified.

1. Let $\mathcal{B}=\left\{\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 3\end{array}\right)\right\} \subset \mathbb{R}^{3}$, and let $V=\operatorname{span} \mathcal{B}$. Let $\mathcal{C}=\left\{\vec{c}_{1}=\left(\begin{array}{l}1 \\ 2 \\ 7\end{array}\right), \vec{c}_{2}=\left(\begin{array}{r}3 \\ 4 \\ 15\end{array}\right)\right\}$.
(You may assume that \mathcal{B} and \mathcal{C} are both linearly independent sets.)
(a) Show that $\operatorname{span}(\mathcal{C})=V$. Explain.
(b) Determine the transition matrices:

- P, from \mathcal{B} to \mathcal{C}; and
- Q, from \mathcal{C} to \mathcal{B}.
(c) Determine $\left[3 \vec{c}_{1}+5 \vec{c}_{2}\right]_{\mathcal{B}}$.

2. In each case, determine whether the given function is a linear transformation. Fully justify your answer.
(a)

$$
\begin{gathered}
\mathbb{R}^{3} \xrightarrow{f} \mathbb{R}^{2} \\
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \longmapsto\binom{2 x_{1}+x_{2}}{4 x_{3}}
\end{gathered}
$$

(b)

$$
\begin{gathered}
\mathbb{R}^{2} \xrightarrow{g} \mathbb{R}^{2} \\
\binom{x_{1}}{x_{2}} \longmapsto\binom{x_{1}+x_{2}}{x_{1} \cdot x_{2}}
\end{gathered}
$$

(c)

$$
\begin{gathered}
\mathbb{R}^{2} \xrightarrow{h} \mathbb{R}^{3} \\
\binom{x_{1}}{x_{2}} \longmapsto\left(\begin{array}{r}
3 x_{1}+4 x_{2} \\
x_{1}+x_{2} \\
x_{1}-x_{2}
\end{array}\right)
\end{gathered}
$$

(d)

$$
\begin{gathered}
\mathcal{P}_{2} \xrightarrow{j} \mathbb{R}^{3} \\
a x^{2}+b x+c \longmapsto\left(\begin{array}{c}
a+b \\
b-c \\
2 c
\end{array}\right)
\end{gathered}
$$

3. For each of the linear transformations in the previous problem, find a basis for the null space and range, and find the nullity and rank.
4. Let $g: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ be a linear transformation such that

$$
g(1)=x^{2}+2 ; \quad g(x)=x-3 ; \quad g\left(x^{2}\right)=x^{2}+x+1
$$

What is $g\left(2 x^{2}-5 x+1\right)$?
5. Let $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{3}$ be defined by $T(p(x))=x p(x)$.
(a) Show that T is a linear transformation.
(b) What is the kernel (nullspace) of T ?
(c) What is the image (range) of T ?

Bonus question Let A by an m by n matrix and B be be an n by k matrix.
a. Show that columnspace $(A B) \subseteq \operatorname{columnspace}(A)$.
b. Show that rowspace $(A B) \subseteq \operatorname{rowspace}(B)$.
c. Conclude that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$ and that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.

