Goal: Given some points in the plane, find a polynomial passing through them.

So much for that.

On to: abstract vector spaces!

Even though most of our calculations have been with matrices and vectors, we've really only used basic properties \mathbb{R}^{n} :

- Can add vectors together;
- Can multiply a vector by a number;
- Can divide by scalars (numbers).

First, need to define a *field*.

A ring is a set equipped with two operations, \cdot and +, which behave the way you expect them to. (e.g., distributive law, associative law, etc.)

Example : \mathbb{Z} , \mathbb{R} , Mat₂(\mathbb{R})

A ring is a field if multiplication is commutative ($a \cdot b = b \cdot a$), and if we can divide by any nonzero element.

Example \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Z}/5$ are all fields.

In contrast,

 \mathbb{Z} isn't a field, since we can't divide (without leaving the world of the integers)

 $\mathbb{R}_{>0}$ is not a field, since we can't subtract without (sometimes) leaving the set of nonnegative reals.

Now, let \mathbb{F} be a field. A vector space over \mathbb{F} is a set *V* such that you can add together elements of *V* to get a third element of *V*; and multiply an element of *V* by a number (in \mathbb{F}) to get an element of *V*.

Somewhat more precisely, we have maps

 $\mathbb{F} \times V \xrightarrow{\cdot} V$ $V \times V \xrightarrow{+} V$

Properties:

• (V, +) is an abelian group

Professor Jeff Achter Colorado State University 1

369 Linear algebra Spring 2010

- If $u, v \in V$, then $u + v \in V$ (closure);
- addition is associative u + (v + w) = (u + v) + w
- *V* has an identity element $0 = 0_V$; u + 0 = u
- additive inverses: if $v \in V$, there's a unique $-v \in V$ such that v + (-v) = 0;
- commutative: u + v = v + u
- Multiplication distributes over addition: If $a \in \mathbb{F}$, $u, v \in V$, then $a \cdot (u + v) = a \cdot u + a \cdot v$
- Multiplication is associative: If $a, b \in \mathbb{F}$, and $v \in VW$, then $a \cdot (b \cdot v) = (a \cdot b) \cdot v$

Example

- \mathbb{R}^n is a vector space (over \mathbb{R})
- \mathbb{F}^n is a vector space over \mathbb{F}
- Fix $m, n \in \mathbb{N}$. Mat_{m,n}(\mathbb{R}) is a vector space over \mathbb{R}

Note: If $A, B \in Mat_{m,n}(\mathbb{R})$, then we can't multiply them; but that's okay. For $Mat_{m,n}(\mathbb{R})$ to be a vector space, need to be able to add matrices; multiply a matrix by a number; and have this satisfy the axioms.

- C[0,1] the set of continuous functions $[0,1] \to \mathbb{R}$ is a vector space over \mathbb{R} .
- $C^{\infty}(-\infty,\infty)$, the space of infinitely differentiable functions on \mathbb{R} , is a vector space over \mathbb{R} .
- *P*(ℝ)[*z*] the set of polynomials, with real coefficients, in the variable *z*, is a vector space over ℝ.
- Fix $d \in \mathbb{N}$ Let $\mathcal{P}_d(\mathbb{R})[z]$ be the set of all polynomials, in the variable z, real coefficients, and degree at most d. This, too, is a vector space over \mathbb{R} .

If f(x), g(x) have degree at most d, their product fg is not necessarily an element of $\mathcal{P}_d(\mathbb{R})[z]$ But that's okay, since we only need to be able to add elements of our (alleged) vector space.

Subspaces:

Suppose *V* is a vector space over a field \mathbb{F} . A subspace $W \subset V$ is a nonempty subset which is a vector space in its own right.

Example In \mathbb{R}^3 , consider

$$W = \left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} : x, y \in \mathbb{R} \right\}$$

Given $u, v \in W$, then their sum is also in W. And if $u \in W$, and $\lambda \in \mathbb{R}$, then $\lambda u \in W$, since its third coordinate is zero.

Professor Jeff Achter Colorado State University 2

369 Linear algebra Spring 2010

Example $\mathcal{P}_3(\mathbb{R})[z] \subset \mathcal{P}(\mathbb{R})[z]$ is a subspace of $\mathcal{P}(\mathbb{R})[z]$.

Theorem Given $W \subset V$ a subset of a vector space, W is a subspace (i.e., a vector space in its own right) if:

- i. $0 \in W$;
- ii. If $u, v \in W$ then $u + v \in W$;
- iii. If $u \in W$ and $a \in \mathbb{F}$, then $a \cdot u \in W$.

Example We'll show that

$$W = \left\{ \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} : x, y \in \mathbb{R} \right\}$$

is a subspace of \mathbb{R}^3

Three things to check:

- $0_{\mathbb{R}^3} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$, it's an element of *W* (use x = y = 0)
- Suppose $u, v \in W$. This means that there are x and y such that

$$u = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}$$

and

$$v = \begin{pmatrix} s \\ t \\ 0 \end{pmatrix}$$

for some $s, t \in \mathbb{R}$ Then the sum of u and v is

$$u + v = \begin{pmatrix} x \\ y \\ 0 \end{pmatrix} + \begin{pmatrix} s \\ t \\ 0 \end{pmatrix}$$
$$= \begin{pmatrix} x + s \\ y + t \\ 0 + 0 \end{pmatrix}$$
$$\in W$$

since we were able to write it as (blah, blah, zero).

Professor Jeff Achter Colorado State University 3

369 Linear algebra Spring 2010

• Suppose
$$u \in W$$
, $a \in \mathbb{R}$. Then $au = \begin{pmatrix} ax \\ ay \\ a0 \end{pmatrix} \in W$

Professor Jeff Achter Colorado State University **369** Linear algebra Spring 2010