Goal: Given some points in the plane, find a polynomial passing through them.
So much for that.
On to: abstract vector spaces!
Even though most of our calculations have been with matrices and vectors, we've really only used basic properties \mathbb{R}^{n} :

- Can add vectors together;
- Can multiply a vector by a number;
- Can divide by scalars (numbers).

First, need to define a field.
A ring is a set equipped with two operations, \cdot and + , which behave the way you expect them to. (e.g., distributive law, associative law, etc.)

Example : $\mathbb{Z}, \mathbb{R}, \operatorname{Mat}_{2}(\mathbb{R})$
A ring is a field if multiplication is commutative $(a \cdot b=b \cdot a)$, and if we can divide by any nonzero element.

Example $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z} / 5$ are all fields.
In contrast,
\mathbb{Z} isn't a field, since we can't divide (without leaving the world of the integers)
$\mathbb{R}_{\geq 0}$ is not a field, since we can't subtract without (sometimes) leaving the set of nonnegative reals.
Now, let \mathbb{F} be a field. A vector space over \mathbb{F} is a set V such that you can add together elements of V to get a third element of V; and multiply an element of V by a number (in \mathbb{F}) to get an element of V.
Somewhat more precisely, we have maps

$$
\begin{aligned}
& \mathbb{F} \times V \longrightarrow V \\
& V \times V \xrightarrow{+} V
\end{aligned}
$$

Properties:

- $(V,+)$ is an abelian group

Professor Jeff Achter
1
369 Linear algebra
Spring 2010

- If $u, v \in V$, then $u+v \in V$ (closure);
- addition is associative $u+(v+w)=(u+v)+w$
- V has an identity element $0=0_{V} ; u+0=u$
- additive inverses: if $v \in V$, there's a unique $-v \in V$ such that $v+(-v)=0$;
- commutative: $u+v=v+u$
- Multiplication distributes over addition: If $a \in \mathbb{F}, u, v \in V$, then $a \cdot(u+v)=a \cdot u+a \cdot v$
- Multiplication is associative: If $a, b \in \mathbb{F}$, and $v \in V W$, then $a \cdot(b \cdot v)=(a \cdot b) \cdot v$

Example

- \mathbb{R}^{n} is a vector space (over \mathbb{R})
- \mathbb{F}^{n} is a vector space over \mathbb{F}
- Fix $m, n \in \mathbb{N}$. Mat $_{m, n}(\mathbb{R})$ is a vector space over \mathbb{R}

Note: If $A, B \in \operatorname{Mat}_{m, n}(\mathbb{R})$, then we can't multiply them; but that's okay. For Mat ${ }_{m, n}(\mathbb{R})$ to be a vector space, need to be able to add matrices; multiply a matrix by a number; and have this satisfy the axioms.

- $\mathcal{C}[0,1]$ the set of continuous functions $[0,1] \rightarrow \mathbb{R}$ is a vector space over \mathbb{R}.
- $\mathcal{C}^{\infty}(-\infty, \infty)$, the space of infinitely differentiable functions on \mathbb{R}, is a vector space over \mathbb{R}.
- $\mathcal{P}(\mathbb{R})[z]$ the set of polynomials, with real coefficients, in the variable z, is a vector space over \mathbb{R}.
- Fix $d \in \mathbb{N}$ Let $\mathcal{P}_{d}(\mathbb{R})[z]$ be the set of all polynomials, in the variable z, real coefficients, and degree at most d. This, too, is a vector space over \mathbb{R}.
If $f(x), g(x)$ have degree at most d, their product $f g$ is not necessarily an element of $\mathcal{P}_{d}(\mathbb{R})[z]$ But that's okay, since we only need to be able to add elements of our (alleged) vector space.

Subspaces:
Suppose V is a vector space over a field \mathbb{F}. A subspace $W \subset V$ is a nonempty subset which is a vector space in its own right.

Example $\operatorname{In} \mathbb{R}^{3}$, consider

$$
W=\left\{\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right): x, y \in \mathbb{R}\right\}
$$

Given $u, v \in W$, then their sum is also in W. And if $u \in W$, and $\lambda \in \mathbb{R}$, then $\lambda u \in W$, since its third coordinate is zero.

Example $\quad \mathcal{P}_{3}(\mathbb{R})[z] \subset \mathcal{P}(\mathbb{R})[z]$ is a subspace of $\mathcal{P}(\mathbb{R})[z]$.

Theorem Given $W \subset V$ a subset of a vector space, W is a subspace (i.e., a vector space in its own right) if:
i. $0 \in W$;
ii. If $u, v \in W$ then $u+v \in W$;
iii. If $u \in W$ and $a \in \mathbb{F}$, then $a \cdot u \in W$.

Example We'll show that

$$
W=\left\{\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right): x, y \in \mathbb{R}\right\}
$$

is a subspace of \mathbb{R}^{3}
Three things to check:

- $0_{\mathbb{R}^{3}}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$, it's an element of $W($ use $x=y=0)$
- Suppose $u, v \in W$. This means that there are x and y such that

$$
u=\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)
$$

and

$$
v=\left(\begin{array}{l}
s \\
t \\
0
\end{array}\right)
$$

for some $s, t \in \mathbb{R}$ Then the sum of u and v is

$$
\begin{aligned}
u+v & =\left(\begin{array}{l}
x \\
y \\
0
\end{array}\right)+\left(\begin{array}{l}
s \\
t \\
0
\end{array}\right) \\
& =\left(\begin{array}{l}
x+s \\
y+t \\
0+0
\end{array}\right) \\
& \in W
\end{aligned}
$$

since we were able to write it as (blah, blah, zero).

- Suppose $u \in W, a \in \mathbb{R}$. Then $a u=\left(\begin{array}{l}a x \\ a y \\ a 0\end{array}\right) \in W$

