
February 24, 2010

Goal: Given some points in the plane, find a polynomial passing through them.

So much for that.

On to: abstract vector spaces!

Even though most of our calculations have been with matrices and vectors, we’ve really only used
basic properties Rn:

• Can add vectors together;

• Can multiply a vector by a number;

• Can divide by scalars (numbers).

First, need to define a field.

A ring is a set equipped with two operations, · and +, which behave the way you expect them to.
(e.g., distributive law, associative law, etc.)

Example : Z, R, Mat2(R)

A ring is a field if multiplication is commutative (a · b = b · a), and if we can divide by any nonzero
element.

Example Q, R, C, Z/5 are all fields.

In contrast,

Z isn’t a field, since we can’t divide (without leaving the world of the integers)

R≥0 is not a field, since we can’t subtract without (sometimes) leaving the set of nonnegative reals.

Now, let F be a field. A vector space over F is a set V such that you can add together elements of
V to get a third element of V; and multiply an element of V by a number (in F) to get an element
of V.

Somewhat more precisely, we have maps

F×V
·

- V

V ×V
+

- V

Properties:

• (V,+) is an abelian group
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– If u, v ∈ V, then u + v ∈ V (closure);
– addition is associative u + (v + w) = (u + v) + w
– V has an identity element 0 = 0V ; u + 0 = u
– additive inverses: if v ∈ V, there’s a unique −v ∈ V such that v + (−v) = 0;
– commutative: u + v = v + u

• Multiplication distributes over addition: If a ∈ F, u, v ∈ V, then a · (u + v) = a · u + a · v

• Multiplication is associative: If a, b ∈ F, and v ∈ VW, then a · (b · v) = (a · b) · v

Example

• Rn is a vector space (over R)

• Fn is a vector space over F

• Fix m, n ∈ N. Matm,n(R) is a vector space over R
Note: If A, B ∈ Matm,n(R), then we can’t multiply them; but that’s okay. For Matm,n(R) to
be a vector space, need to be able to add matrices; multiply a matrix by a number; and have
this satisfy the axioms.

• C[0, 1] the set of continuous functions [0, 1]→ R is a vector space over R.

• C∞(−∞, ∞), the space of infinitely differentiable functions on R, is a vector space over R.

• P(R)[z] the set of polynomials, with real coefficients, in the variable z, is a vector space over
R.

• Fix d ∈ N Let Pd(R)[z] be the set of all polynomials, in the variable z, real coefficients, and
degree at most d. This, too, is a vector space over R.

If f (x), g(x) have degree at most d, their product f g is not necessarily an element of Pd(R)[z]
But that’s okay, since we only need to be able to add elements of our (alleged) vector space.

Subspaces:

Suppose V is a vector space over a field F. A subspace W ⊂ V is a nonempty subset which is a
vector space in its own right.

Example In R3, consider

W = {

x
y
0

 : x, y ∈ R}

Given u, v ∈W, then their sum is also in W. And if u ∈W, and λ ∈ R, then λu ∈W, since its third
coordinate is zero.
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Example P3(R)[z] ⊂ P(R)[z] is a subspace of P(R)[z].

Theorem Given W ⊂ V a subset of a vector space, W is a subspace (i.e., a vector space in its own
right) if:

i. 0 ∈W;

ii. If u, v ∈W then u + v ∈W;

iii. If u ∈W and a ∈ F, then a · u ∈W.

Example We’ll show that

W = {

x
y
0

 : x, y ∈ R}

is a subspace of R3

Three things to check:

• 0R3 =

0
0
0

, it’s an element of W (use x = y = 0)

• Suppose u, v ∈W. This means that there are x and y such that

u =

x
y
0


and

v =

s
t
0


for some s, t ∈ R Then the sum of u and v is

u + v =

x
y
0

+

s
t
0


=

x + s
y + t
0 + 0


∈W

since we were able to write it as (blah, blah, zero).
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• Suppose u ∈W, a ∈ R. Then au =

ax
ay
a0

 ∈W
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