If A, B, C and $C A=B$, and C invertible, then A invertible if and only if B invertible.

Theorem If $A \in \operatorname{Mat}(n)$, and B is $\operatorname{RREF}(\mathrm{A})$, then A is invertible if and only if $B=I$.

Theorem A matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.

Proof As before, find C, a product of elementary matrices, such that $C A=R R E F(B)$. Then:

$$
\begin{aligned}
E_{r} E_{r-1} \cdots E_{1} A & =B \\
\operatorname{det}(B) & =\operatorname{det}\left(E_{r} E_{r-1} \cdots E_{1} A\right)
\end{aligned}
$$

Recall: If E elementary matrix, C square, then $\operatorname{det}(E C)=\operatorname{det}(E) \operatorname{det}(C)$.

$$
=\operatorname{det}\left(E_{r}\right) \operatorname{det}\left(E_{r-1}\right) \cdots \operatorname{det}\left(E_{1}\right) \operatorname{det}(A)
$$

So, $\operatorname{det}(B)=$ nonzero $\operatorname{det}(A)$. So $\operatorname{det}(A) \neq 0 \Longleftrightarrow \operatorname{det}(B) \neq 0 \Longleftrightarrow B=I$.

Theorem $\quad A, B \in \operatorname{Mat}(n)$. Then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$.

Proof If A and B are invertible, then so is $A B$ (homework). By contrapositive, if $A B$ is not invertible, then (at least one of) A or B isn't invertible. If this happens, then $\operatorname{det}(A B)=0$, and one of $\operatorname{det}(A)$ or $\operatorname{det}(B)$ is zero. So the result holds...
Otherwise, suppose $A, B, A B$ invertible. Since A is invertible, there are elementary matrices E_{1}, \cdots, E_{r} such that

$$
\begin{aligned}
E_{r} E_{r-1} \cdots E_{1} A & =I \\
A & =E_{1}^{-1} E_{2}^{-1} \cdots E_{r}^{-1} I \\
& =F_{1} \cdots F_{r}
\end{aligned}
$$

So,

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det}\left(F_{1} \cdots F_{r} B\right) \\
& =\operatorname{det}\left(F_{1}\right) \operatorname{det}\left(F_{2}\right) \cdots \operatorname{det}\left(F_{r}\right) B
\end{aligned}
$$

but each F_{i} elementary, so

$$
\begin{aligned}
& =\operatorname{det}\left(F_{1} \cdots F_{r}\right) \operatorname{det}(B) \\
& =\operatorname{det}(A) \operatorname{det}(B)
\end{aligned}
$$

**
Cramer's Rule

Professor Jeff Achter

Example Consider the system of equations

$$
\begin{aligned}
& 5 x+3 y=8 \\
& 2 x+7 y=-1
\end{aligned}
$$

Claim: The unique solution is:

$$
\begin{aligned}
& x=\frac{\left|\begin{array}{cc}
8 & 3 \\
-1 & 7
\end{array}\right|}{\left|\begin{array}{ll}
5 & 3 \\
2 & 7
\end{array}\right|} \\
& y=\frac{\left|\begin{array}{cc}
5 & 8 \\
2 & -1
\end{array}\right|}{\left|\begin{array}{ll}
5 & 3 \\
2 & 7
\end{array}\right|}
\end{aligned}
$$

Check: $\operatorname{det}(A)=5 \cdot 7-3 \cdot 2=29, x=(8 \cdot 7-(-1) \cdot 3) / 29, y=(5 \cdot(-1)-2 \cdot(8)) / 29$
So $x=59 / 29, y=-21 / 29$. (Check - this works!)
In general, we have
Cramer's Theorem Given $A \in \operatorname{Mat}(n), b \in \mathbb{R}^{n}$. Let $A^{(i)}$ be the matrix obtained from A by replacing the $i^{\text {th }}$ column with b. Then the unique solution to

$$
A x=b
$$

is given by

$$
x_{i}=\frac{\operatorname{det}\left(A^{(i)}\right)}{\operatorname{det}(A)}
$$

(Assumes $\operatorname{det}(A)$ is not zero, so that $A x=b$ has a unique solution.)
Special case: $n=2$.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

Then

$$
\begin{gathered}
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) . \\
A^{(1)}=\left(\begin{array}{ll}
b_{1} & a_{12} \\
b_{2} & a_{22}
\end{array}\right) .
\end{gathered}
$$

Similarly,

$$
A^{(2)}=\left(\begin{array}{ll}
a_{11} & b_{1} \\
a_{21} & b_{2}
\end{array}\right)
$$

Then $x_{i}=\left|A^{(i)}\right| /|A|$. So there's a unique solution

$$
\binom{x_{1}}{x_{2}}=\binom{\operatorname{det}\left(A^{(1)}\right) / \operatorname{det}(A)}{\operatorname{det}\left(A^{(2)}\right) / \operatorname{det}(A)}
$$

Idea of proof:
Let $I^{(j)}$ be the matrix obtained from I by replacing $j^{\text {th }}$ column with the vector x (the column vector $\left(x_{1}, \cdots, x_{n}\right)$).
Consider $A I^{(j)}$. The $i^{\text {th }}$ column of the product is the $i^{\text {th }}$ column of A (if $i \neq j$); and it's equal to $A x$ if $i=j$.
So, our equation $A x=b$ (a vector equation) is the same as the matrix equation

$$
A I^{(j)}=A^{(j)}
$$

But A is invertible, so

$$
\begin{aligned}
\operatorname{det}(A) \operatorname{det}\left(I^{(j)}\right) & =\operatorname{det} A^{(j)} \\
\operatorname{det} I^{(j)} & =\frac{\operatorname{det} A^{(j)}}{\operatorname{det}(A)}
\end{aligned}
$$

But if we compute $\operatorname{det} I^{(j)}$, by expanding on the $j^{t h}$ row, we get $\operatorname{det} I^{(j)}=x_{j}$.
Invertibility
Suppose $A \in \operatorname{Mat}(n)$. Then the following are equivalent:

- A is invertible.
- $\operatorname{RREF}(A)=I$
- $\operatorname{det}(A) \neq 0$
- For each $b \in \mathbb{R}^{n}$, there's a unique solution to $A x=b$
- The column space of A is \mathbb{R}^{n}

Recall: let $a^{(i)}$ be the $i^{\text {th }}$ column of A. The column space of A is $\operatorname{span}\left(a^{(1)}, \ldots, a^{(n)}\right)$, i.e., the set of all linear combinations of the columns of A
Next goal: Given a collection of points in the plane, find a polynomial through them.

Example Find a cubic polynomial through $\{(1,5),(2,7),(4,8),(9,5),(11,12)\}$.
So, any cubic polynomial looks like

$$
f(x)=a+b x+c x^{2}+d x^{3}
$$

So we need to find $\{a, b, c, d\}$ such that $f(1)=5, f(2)=7$, etc.
This becomes the system

$$
\begin{gathered}
a+b \cdot 1+c \cdot 1^{2}+d \cdot 1^{3}=5 \\
a+b \cdot 2+c \cdot 2^{2}+d \cdot 2^{3}=7 \\
\text { etc. }
\end{gathered}
$$

