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If A, B, C and CA = B, and C invertible, then A invertible if and only if B invertible.

Theorem If A ∈ Mat(n), and B is RREF(A), then A is invertible if and only if B = I.

Theorem A matrix A is invertible if and only if det(A) 6= 0.

Proof As before, find C, a product of elementary matrices, such that CA = RREF(B). Then:

ErEr−1 · · · E1 A = B
det(B) = det(ErEr−1 · · · E1 A)

Recall: If E elementary matrix, C square, then det(EC) = det(E) det(C).

= det(Er) det(Er−1) · · · det(E1) det(A)

So, det(B) = nonzero det(A). So det(A) 6= 0 ⇐⇒ det(B) 6= 0 ⇐⇒ B = I.

Theorem A, B ∈ Mat(n). Then det(AB) = det(A) det(B).

Proof If A and B are invertible, then so is AB (homework). By contrapositive, if AB is not invert-
ible, then (at least one of) A or B isn’t invertible. If this happens, then det(AB) = 0, and one of
det(A) or det(B) is zero. So the result holds...

Otherwise, suppose A, B, AB invertible. Since A is invertible, there are elementary matrices
E1, · · · , Er such that

ErEr−1 · · · E1 A = I

A = E−1
1 E−1

2 · · · E
−1
r I

= F1 · · · Fr

So,

det(AB) = det(F1 · · · FrB)
= det(F1) det(F2) · · · det(Fr)B

but each Fi elementary, so

= det(F1 · · · Fr) det(B)
= det(A) det(B)

**

Cramer’s Rule
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Example Consider the system of equations

5x + 3y = 8
2x + 7y = −1

Claim: The unique solution is:

x =

∣∣∣∣ 8 3
−1 7

∣∣∣∣∣∣∣∣5 3
2 7

∣∣∣∣
y =

∣∣∣∣5 8
2 −1

∣∣∣∣∣∣∣∣5 3
2 7

∣∣∣∣
Check: det(A) = 5 · 7− 3 · 2 = 29, x = (8 · 7− (−1) · 3)/29, y = (5 · (−1)− 2 · (8))/29

So x = 59/29, y = −21/29. (Check – this works!)

In general, we have

Cramer’s Theorem Given A ∈ Mat(n), b ∈ Rn. Let A(i) be the matrix obtained from A by replacing
the ith column with b. Then the unique solution to

Ax = b

is given by

xi =
det(A(i))

det(A)
.

(Assumes det(A) is not zero, so that Ax = b has a unique solution.)

Special case: n = 2.

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2

Then

A =

(
a11 a12
a21 a22

)
.

A(1) =

(
b1 a12
b2 a22

)
.
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Similarly,

A(2) =

(
a11 b1
a21 b2

)
.

Then xi =
∣∣∣A(i)

∣∣∣/|A|. So there’s a unique solution(
x1
x2

)
=

(
det(A(1))/ det(A)

det(A(2))/ det(A)

)

Idea of proof:

Let I( j) be the matrix obtained from I by replacing jth column with the vector x (the column vector
(x1, · · · , xn)).

Consider AI( j). The ith column of the product is the ith column of A (if i 6= j); and it’s equal to Ax
if i = j.

So, our equation Ax = b (a vector equation) is the same as the matrix equation

AI( j) = A( j).

But A is invertible, so

det(A) det(I( j)) = det A( j)

det I( j) =
det A( j)

det(A)

But if we compute det I( j), by expanding on the jth row, we get det I( j) = x j.

Invertibility

Suppose A ∈ Mat(n) . Then the following are equivalent:

• A is invertible.

• RREF(A) = I

• det(A) 6= 0

• For each b ∈ Rn, there’s a unique solution to Ax = b

• The column space of A is Rn

Recall: let a(i) be the ith column of A. The column space of A is span(a(1), · · · , a(n)), i.e., the set of
all linear combinations of the columns of A

Next goal: Given a collection of points in the plane, find a polynomial through them.
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Example Find a cubic polynomial through {(1, 5), (2, 7), (4, 8), (9, 5), (11, 12)}.

So, any cubic polynomial looks like

f (x) = a + bx + cx2 + dx3.

So we need to find {a, b, c, d} such that f (1) = 5, f (2) = 7, etc.

This becomes the system

a + b · 1 + c · 12 + d · 13 = 5

a + b · 2 + c · 22 + d · 23 = 7
etc.
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