Homework 9
 Due: Friday, April 21

1. Let V be an inner product space, and let $U \subseteq V$ be a subspace. Suppose that $U=\operatorname{span}\left(u_{1}, \cdots, u_{m}\right)$. Let $v \in V$. Prove that $v \in U^{\perp}$ if and only if, for each $j=1, \cdots, m,\left\langle u_{j}, v\right\rangle=0$.
Let V be an inner product space, and let $\mathcal{B}=\left\{v_{1}, \cdots, v_{n}\right\}$ be a basis for V. The associated Gram matrix is the $n \times n$ matrix G, whose $i j$ entry is $g_{i j}=\left\langle v_{i}, v_{j}\right\rangle$. In class, we saw that

$$
\langle u, w\rangle=\left([u]_{\mathcal{B}}\right)^{T} G[v]_{\mathcal{B}} .
$$

2. Let V be an inner product space with basis \mathcal{B}. Let $U \subseteq V$ be $\operatorname{span}\left(u_{1}, \cdots, u_{m}\right)$. Let A be the matrix

$$
A=\left(\left[u_{1}\right]_{\mathcal{B}} \cdots\left[u_{m}\right]_{\mathcal{B}}\right) .
$$

Suppose $v \in V$. Prove that $v \in U^{\perp}$ if and only if

$$
A^{T} G[v]_{\mathcal{B}}=0
$$

Remark: In the special case where the basis is orthonormal, G is the identity matrix, so that the condition becomes $A^{T}[v]_{\mathcal{B}}=0$.
3. This problem explains another way to compute the orthogonal projection of a vector on to a subspace. Let V be an inner product space, and let $U \subseteq V$ be a subspace with basis $\left\{u_{1}, \cdots, u_{m}\right\}$. As in the prevoius problem, let A be the matrix

$$
A=\left(\left[u_{1}\right]_{\mathcal{B}} \cdots\left[u_{m}\right]_{\mathcal{B}}\right) .
$$

Given a vector $v \in V$, our goal is to write $P_{U}(v)=c_{1} u_{1}+c_{2} u_{2}+\cdots+c_{m} u_{m}$. Before starting, convince yourself that if $P_{U}(v)=\sum_{i=1}^{m} c_{i} u_{i}$, then

$$
A\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right)=\left[P_{U}(v)\right]_{\mathcal{B}} .
$$

(a) Prove that

$$
A^{T} G\left(\left[P_{U}(v)\right]_{\mathcal{B}}-[v]_{\mathcal{B}}\right)=0
$$

(Hint: $P_{U}(v)-v \in U^{\perp}$.)
(b) Show that the column vector

$$
c=\left(\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{m}
\end{array}\right)
$$

satisfies

$$
A^{T} G A c=A^{T} G[v]_{\mathcal{B}} .
$$

4. Let $V=\mathbb{R}^{4}$ with the standard inner product. Let

$$
U=\operatorname{span}\left(\left(\begin{array}{c}
1 \\
1 \\
-1 \\
-1
\end{array}\right),\left(\begin{array}{c}
1 \\
2 \\
-2 \\
-2
\end{array}\right)\right)
$$

Find the vector in U which is closest to

$$
v=\left(\begin{array}{c}
9 \\
12 \\
-6 \\
-3
\end{array}\right)
$$

(Hint: Use the prevoius problem. What is G ? What is A ? At some point, you'll want to compute $\left(A^{T} A\right)^{-1}$.)

