Homework 8 Due: Friday, April 14

Recall that if V is an inner product space with a basis $\mathcal{B} = \{v_1, \dots, v_n\}$, then the Gram matrix of the inner product with respect to \mathcal{B} is the matrix whose ij^{th} entry is $\langle v_i, v_j \rangle$.

- 1. Consider \mathbb{R}^3 with the standard basis and the standard inner product. Find an orthonormal basis for $U = \text{span}((1,2,2)^T, (1,3,1)^T)$.
- 2. On $\mathcal{P}_2(\mathbb{R})[x]$, consider the inner product given by

$$\langle p,q\rangle = \int_0^1 p(x)q(x)dx.$$

Apply the Gram-Schmidt procedure to the basis $\{1, x, x^2\}$ to produce an orthonormal basis of $\mathcal{P}_2(\mathbb{R})[x]$

3. Let $V = \mathbb{R}^3$ with an inner product whose Gram matrix, with respec to the standard basis \mathcal{B} , is

$$G_{\mathcal{E}} = \begin{pmatrix} 2 & 2 & -6 \\ 2 & 3 & -5 \\ -6 & -5 & 22 \end{pmatrix}$$

- (a) Calculate the inner product of $(1, 2, 3)^T$ with $(4, 5, 6)^T$.
- (b) Let $U = \text{span}((1,0,0)^T, (0,1,0)^T)$. Calculate a basis of U^{\perp} .
- 4. Suppose that *U* is a subspace of an inner product space *V*. Carefully prove that U^{\perp} is also a subspace of *V*.
- 5. Suppose that *U* is a subspace of an inner product space *V*. Prove that

 $\dim U^{\perp} = \dim V - \dim U.$

Professor Jeff Achter Colorado State University M369 Linear Algebra Spring 2006