Homework 8

Due: Friday, April 14

Recall that if V is an inner product space with a basis $\mathcal{B}=\left\{v_{1}, \cdots, v_{n}\right\}$, then the Gram matrix of the inner product with respect to \mathcal{B} is the matrix whose $i j^{\text {th }}$ entry is $\left\langle v_{i}, v_{j}\right\rangle$.

1. Consider \mathbb{R}^{3} with the standard basis and the standard inner product. Find an orthonormal basis for $U=\operatorname{span}\left((1,2,2)^{T},(1,3,1)^{T}\right)$.
2. On $\mathcal{P}_{2}(\mathbb{R})[x]$, consider the inner product given by

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Apply the Gram-Schmidt procedure to the basis $\left\{1, x, x^{2}\right\}$ to produce an orthonormal basis of $\mathcal{P}_{2}(\mathbb{R})[x]$
3. Let $V=\mathbb{R}^{3}$ with an inner product whose Gram matrix, with respec to the standard basis \mathcal{B}, is

$$
G_{\mathcal{E}}=\left(\begin{array}{ccc}
2 & 2 & -6 \\
2 & 3 & -5 \\
-6 & -5 & 22
\end{array}\right)
$$

(a) Calculate the inner product of $(1,2,3)^{T}$ with $(4,5,6)^{T}$.
(b) Let $U=\operatorname{span}\left((1,0,0)^{T},(0,1,0)^{T}\right)$. Calculate a basis of U^{\perp}.
4. Suppose that U is a subspace of an inner product space V. Carefully prove that U^{\perp} is also a subspace of V.
5. Suppose that U is a subspace of an inner product space V. Prove that

$$
\operatorname{dim} U^{\perp}=\operatorname{dim} V-\operatorname{dim} U
$$

