Homework 7
Due: Friday, March 31

1. Let $T \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ be the operator whose matrix, with respect to the standard basis \mathcal{E}, is

$$
[T]_{\mathcal{E}}=\left(\begin{array}{cc}
-7 & 10 \\
-5 & 8
\end{array}\right) .
$$

(a) Find all eigenvalues of T.
(b) For each eigenvalue, find an associated nonzero eigenvector.
(c) Use your vectors from part (b) to make a new basis, \mathcal{B}, for \mathbb{R}^{2}. What is $[T]_{\mathcal{B}}$?
(d) Show directly, by matrix multiplication, that

$$
[\mathrm{id}]_{\mathcal{B} \leftarrow \mathcal{E}}[T]_{\mathcal{E}} \mathrm{id}_{\mathcal{E} \leftarrow \mathcal{B}}=[T]_{\mathcal{B}} .
$$

2. Each of the following matrices describes a linear transformation from \mathbb{R}^{5} to itself. In each case, is the matrix diagonalizable? (Equivalently, is there a basis in which the given linear transformation has diagonal matrix?)
While you must explain your reasoning, you need not actually diagonalize any of the matrices.
(a)

$$
\begin{aligned}
A & =\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
-1 & -72 & -316 & 0 & 97 \\
48 & 222 & 950 & 0 & -291 \\
10 & 36 & 147 & 3 & -45 \\
144 & 666 & 2844 & 0 & -871
\end{array}\right) \\
\text { charpoly }_{A}(X) & =(X-2)^{3}(X-3)^{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
B & =\left(\begin{array}{ccccc}
2 & 0 & 0 & 0 & 0 \\
14 & -3 & -5 & 0 & 0 \\
-14 & 5 & 7 & 0 & 0 \\
-28 & 10 & 8 & 3 & 0 \\
0 & 0 & 0 & 0 & 3
\end{array}\right) \\
\operatorname{charpoly}_{B}(X) & =(X-2)^{3}(X-3)^{2}
\end{aligned}
$$

(c)

$$
\begin{aligned}
C & =\left(\begin{array}{ccccc}
341 & -90 & 0 & -48 & 30 \\
1348 & -356 & 0 & -102 & 120 \\
-50 & 12 & 3 & -4 & 7 \\
-112 & 30 & 0 & 21 & -10 \\
46 & -12 & 0 & -4 & 6
\end{array}\right) \\
\text { charpoly }_{C}(X) & =(X-1)(X-2)(X-3)(X-4)(X-5)
\end{aligned}
$$

3. The Fibonacci numbers are defined by the recurrence relation

$$
F_{n}= \begin{cases}1 & n=0 \text { or } 1 \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2\end{cases}
$$

So, the first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13....
(a) For $n \geq 1$, let $v_{n} \in \mathbb{R}^{2}$ be the column vector $v_{n}=\binom{F_{n}}{F_{n-1}}$. So, the first few vectors are

$$
v_{1}=\binom{1}{1}, \quad v_{2}=\binom{2}{1}, \quad v_{3}=32, \quad v_{4}=53 \ldots
$$

Let A be the matrix $A=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right)$. Show that $A v_{n}=v_{n+1}$.
(b) What are the eigenvectors and eigenvalues for A ?
(c) Find a diagonal matrix D and a matrix P such that $D=P^{-1} A P$.
(d) Find a formula for A^{n}.
(e) Use your formula, and the fact that $v_{n+1}=A^{n} v_{1}$, to find a formula for F_{n}.
4. Which of the following define inner products on \mathbb{R}^{3} ? (In each, x and y are arbitrary elements of \mathbb{R}^{3}, with $x=\left(x_{1}, x_{2}, x_{3}\right)^{T}$ and $y=\left(y_{1}, y_{2}, y_{3}\right)^{T}$.)
(a) $\langle x, y\rangle=x_{1} y_{1}+x_{3} y_{3}$
(b) $\langle x, y\rangle=x_{1} y_{1}-x_{2} y_{2}+x_{3} y_{3}$
(c) $\langle x, y\rangle=2 x_{1} y_{1}+x_{2} y_{2}+4 x_{3} y_{3}$
(d) $\langle x, y\rangle=x_{1} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+x_{3}^{2} y_{3} 2$.
5. Suppose that V is a complex vector space, and that $\langle\cdot, \cdot\rangle$ is an inner product on V.
(a) Prove, using only the definition of an inner product (Axler, page 100), then for $\lambda \in \mathbb{C}$ and $u, v \in V$,

$$
\langle u, \lambda v\rangle=\bar{\lambda}\langle u, v\rangle .
$$

(b) Suppose that for all u and $v,\langle\lambda u, v\rangle=\langle u, \lambda v\rangle$. Prove that $\lambda \in \mathbb{R}$.

