Homework 6
Due: Friday, March 24

1. We work with \mathbb{R}^{2} with the standard basis $\mathcal{E}=\left\{(1,0)^{T},(0,1)^{T}\right\}$. Let $T \in \mathcal{L}\left(\mathbb{R}^{2}\right)$ be the operator with matrix

$$
[T]_{\mathcal{E} \leftarrow \mathcal{E}}=[T]_{\mathcal{E}}=\left(\begin{array}{cc}
27 & 50 \\
15 & -28
\end{array}\right) .
$$

Let v be the vector given by $[v]_{\mathcal{E}}=\left(\begin{array}{ll}1 & 0\end{array}\right)$.
(a) Compute $[T(v)]_{\mathcal{E}}$ and $\left[T^{2}(v)\right]_{\mathcal{E}}$.
(b) Find numbers a_{0}, a_{1} and a_{2} such that

$$
a_{2} \cdot T^{2}(v)+a_{1} T(v)+v=0 .
$$

(c) Find an eigenvalue of T, and an associated eigenvector. (Hint: Consider the polynomial $a_{2} z^{2}+a_{1} z+a_{0}$.)
2. Define $T \in \mathcal{L}\left(\mathbb{F}^{3}\right)$ by $T(x, y, z)=(2 y, 0,5 z)$. Determine all eigenvalues and eigenvectors of T.
3. Suppose that $S, T \in \mathcal{L}(V)$ with $S T=T S$, and suppose that $\lambda \in \mathbb{F}$. Prove that null $(T-\lambda \mathrm{id})$ is invariant under S.
4. Suppose that $T \in \mathcal{L}(V)$.
(a) Suppose that $x, y \in V$ are nonzero vectors, and that x, y and $x+y$ are each eigenvectors of T. Prove that x and y belong to the same eigenvalue.
(In other words, if $T(x)=\lambda_{1} x, T(y)=\lambda_{2} y$, and $T(x+y)=\lambda_{3}(x+y)$, then $\lambda_{1}=\lambda_{2}$.)
(b) Suppose that every element of V is an eigenvector of T. Prove that T is a scalar multiple of the identity operator.
5. Suppose $T \in \mathcal{L}(V)$ and $\operatorname{dim} \operatorname{im}(T)=k$. Prove that T has at most $k+1$ distinct eigenvalues.

