Homework 6 Due: Friday, March 24

1. We work with \mathbb{R}^2 with the standard basis $\mathcal{E} = \{(1,0)^T, (0,1)^T\}$. Let $T \in \mathcal{L}(\mathbb{R}^2)$ be the operator with matrix

$$[T]_{\mathcal{E}\leftarrow\mathcal{E}} = [T]_{\mathcal{E}} = \begin{pmatrix} 27 & 50\\ 15 & -28 \end{pmatrix}.$$

Let *v* be the vector given by $[v]_{\mathcal{E}} = (1 \quad 0)$.

- (a) Compute $[T(v)]_{\mathcal{E}}$ and $[T^2(v)]_{\mathcal{E}}$.
- (b) Find numbers a_0 , a_1 and a_2 such that

$$a_2 \cdot T^2(v) + a_1 T(v) + v = 0.$$

- (c) Find an eigenvalue of *T*, and an associated eigenvector. (Hint: Consider the polynomial $a_2z^2 + a_1z + a_0$.)
- 2. Define $T \in \mathcal{L}(\mathbb{F}^3)$ by T(x, y, z) = (2y, 0, 5z). Determine all eigenvalues and eigenvectors of *T*.
- 3. Suppose that $S, T \in \mathcal{L}(V)$ with ST = TS, and suppose that $\lambda \in \mathbb{F}$. Prove that $null(T \lambda id)$ is invariant under *S*.
- 4. Suppose that $T \in \mathcal{L}(V)$.
 - (a) Suppose that *x*, *y* ∈ *V* are nonzero vectors, and that *x*, *y* and *x* + *y* are each eigenvectors of *T*. Prove that *x* and *y* belong to the *same* eigenvalue.
 (In other words, if *T*(*x*) = λ₁*x*, *T*(*y*) = λ₂*y*, and *T*(*x* + *y*) = λ₃(*x* + *y*), then λ₁ = λ₂.)
 - (b) Suppose that every element of *V* is an eigenvector of *T*. Prove that *T* is a scalar multiple of the identity operator.
- 5. Suppose $T \in \mathcal{L}(V)$ and dim im(T) = k. Prove that T has at most k + 1 distinct eigenvalues.

Professor Jeff Achter Colorado State University M369 Linear Algebra Spring 2006