Homework 5

Due: Friday, March 10

1. Suppose that W and V are finite-dimensional vector spaces over \mathbb{F}, with bases \mathcal{C} and \mathcal{B}, respectively.
(a) Suppose that $v \in V$ and $\lambda \in \mathbb{F}$. Show that $[\lambda v]_{\mathcal{B}}=\lambda[v]_{\mathcal{B}}$.
(b) Suppose that $f \in \mathcal{L}(W, V)$; then the function $\lambda f \in \mathcal{L}(W, V)$. Show that $[\lambda f]_{\mathcal{B} \leftarrow \mathcal{C}}=$ $\lambda[f]_{\mathcal{B} \leftarrow \mathcal{C}}$.
(Don't be scared of all the definitions and symbols; this isn't too hard when you unwind it. This fills in the missing part of the proof from class that the function $\mathcal{L}(W, V) \rightarrow \operatorname{Mat}(m, n, \mathbb{F})$ given by $f \mapsto[f]_{\mathcal{B} \leftarrow \mathcal{C}}$ is a linear transformation.)
2. Let $V=\mathbb{R}^{2}$ with the standard basis $\mathcal{E}=\left\{\binom{1}{0},\binom{0}{1}\right\}$. Let $f: V \rightarrow V$ be the linear transformation with matrix

$$
[f]_{\mathcal{E} \leftarrow \mathcal{E}}=\left(\begin{array}{cc}
-3 & -8 \\
10 & 27
\end{array}\right)
$$

(a) Suppose $\left[v_{1}\right]_{\mathcal{E}}=\binom{5}{3}$. What is $\left[f\left(v_{1}\right)\right]_{\mathcal{E}}$?
(b) Let \mathcal{C} be the basis $\mathcal{C}=\left\{\binom{1}{1},\binom{2}{3}\right\}$. What is $[f]_{\mathcal{C} \leftarrow \mathcal{C}}$?
(c) Suppose $\left[v_{2}\right]_{\mathcal{C}}=\binom{3}{4}$. What is $\left[f\left(v_{2}\right)\right]_{\mathcal{C}}$?
3. Let $V=\mathbb{R}^{2}$ with the standard basis $\mathcal{E}=\left\{\binom{1}{0},\binom{0}{1}\right\}$, and consider the following pictures:
(1)

(2)

(3)

(4)

(5)

(6)

(7)
(a) A linear transformation $f_{21}: V \rightarrow V$ transforms picture (1) to picture (2). What is $\left[f_{21}\right]_{\mathcal{E} \leftarrow \mathcal{E}}$?
(b) Do the same thing for the rest of the pictures; for each $j=2, \cdots, 7$, find the matrix of the linear transformation $f_{j 1}$ which transforms picture (1) to picture (j).
4. (Continuation of problem 3)
(a) Find a matrix for the transformation of (2) into (5). (Again, use the standard basis \mathcal{E}.)
(b) For each matrix you find in problem 3, compute the determinant of the matrix of the transform. How does the sign of the determinant relate to the picture?
5. Let U_{1} and U_{2} be subspaces of a vector space V. Suppose that $f \in \mathcal{L}(V, V)$, and that each of U_{1} and U_{2} is invariant under f. Prove that $U_{1} \cap U_{2}$ is invariant under f.

