Homework 4

Due: Friday, March 3

1. Let $A \in \operatorname{Mat}(m, n, \mathbb{F})$ be a matrix. For each of the following statements, indicate whether the statement is true or false. (For once, you need not justify your answer!)
(a) If $\operatorname{rank}(A)=m$ then the system $A x=b$ has at least one solution for every $b \in \mathbb{F}^{m}$.
(b) If $\operatorname{rank}(A)=n$ then the system $A x=b$ has at least one solution for every $b \in \mathbb{F}^{m}$.
(c) If $\operatorname{rank}(A)=m$ then the system $A x=b$ has at most one (i.e., no solution or a unique solution) for every $b \in \mathbb{F}^{m}$.
(d) If $\operatorname{rank}(A)=n$ then the system $A x=b$ has at most one (i.e., no solution or a unique solution) for every $b \in \mathbb{F}^{m}$.
(e) If $A x=b$, then $x \in \operatorname{row}(A)$.
(f) If $A x=b$, then $b \in \operatorname{col}(A)$.
(g) If $B \in \operatorname{Mat}(m, n, \mathbb{F})$ is row equivalent to A then $\operatorname{col}(A)=\operatorname{col}(B)$.
(h) If $B \in \operatorname{Mat}(m, n, \mathbb{F})$ is row equivalent to A then $\operatorname{row}(A)=\operatorname{row}(B)$.
(i) If the columns of A are linearly independent then the rows of A are linearly independent.
(j) If $\operatorname{col}(A)=\mathbb{F}^{m}$ and $m \leq n$ then $\operatorname{row}(A)=\mathbb{F}^{n}$.
2. Find two matrices A, B in $\operatorname{Mat}(2,2, \mathbb{R})$ such that $A \cdot B \neq B \cdot A$.
3. Fix a matrix $B \in \operatorname{Mat}(n, n, \mathbb{F})$. Consider the function

$$
\begin{array}{r}
\operatorname{Mat}(n, n, \mathbb{F}) \xrightarrow{f} \operatorname{Mat}(n, n, \mathbb{F}) \\
A \longmapsto A \cdot B-B \cdot A
\end{array}
$$

Prove that this is a linear transformation, i.e., that $f \in \mathcal{L}(\operatorname{Mat}(n, n, \mathbb{F}), \operatorname{Mat}(n, n, \mathbb{F}))$.
4. Suppose that f and g are invertible elements of $\mathcal{L}(V, V)=\mathcal{L}(V)$ Prove that $f \circ g$ is invertible. What is the inverse of $f \circ g$?
5. Suppose $f \in \mathcal{L}(W, V)$ is a linear transformation between two finite-dimensional vector spaces. Let $\mathcal{C}=\left(w_{1}, \cdots, w_{n}\right)$ be a basis for W, and let \mathcal{B} be a basis for V. Let $A=[f]_{\mathcal{B} \leftarrow \mathcal{C}}$. Show that the column space of A is equal to the image of f.
(Concretely, suppose that $v \in V$. Show that $v \in \operatorname{im}(f)$ if and only if $[v]_{\mathcal{B}} \in \operatorname{col}(A)$.)

