Homework 4 Due: Friday, March 3

- 1. Let $A \in Mat(m, n, \mathbb{F})$ be a matrix. For each of the following statements, indicate whether the statement is true or false. (For once, you need not justify your answer!)
 - (a) If rank(A) = m then the system Ax = b has at least one solution for every $b \in \mathbb{F}^{m}$.
 - (b) If rank(A) = n then the system Ax = b has at least one solution for every $b \in \mathbb{F}^{m}$.
 - (c) If rank(A) = m then the system Ax = b has at most one (i.e., no solution or a unique solution) for every $b \in \mathbb{F}^m$.
 - (d) If rank(A) = n then the system Ax = b has at most one (i.e., no solution or a unique solution) for every $b \in \mathbb{F}^m$.
 - (e) If Ax = b, then $x \in row(A)$.
 - (f) If Ax = b, then $b \in col(A)$.
 - (g) If $B \in Mat(m, n, \mathbb{F})$ is row equivalent to A then col(A) = col(B).
 - (h) If $B \in Mat(m, n, \mathbb{F})$ is row equivalent to A then row(A) = row(B).
 - (i) If the columns of *A* are linearly independent then the rows of *A* are linearly independent.
 - (j) If $col(A) = \mathbb{F}^m$ and $m \le n$ then $row(A) = \mathbb{F}^n$.
- 2. Find two matrices *A*, *B* in Mat(2, 2, \mathbb{R}) such that $A \cdot B \neq B \cdot A$.
- 3. Fix a matrix $B \in Mat(n, n, \mathbb{F})$. Consider the function

$$\operatorname{Mat}(n,n,\mathbb{F}) \xrightarrow{f} \operatorname{Mat}(n,n,\mathbb{F})$$

$$A \longmapsto A \cdot B - B \cdot A$$

Prove that this is a linear transformation, i.e., that $f \in \mathcal{L}(Mat(n, n, \mathbb{F}), Mat(n, n, \mathbb{F}))$.

- 4. Suppose that *f* and *g* are invertible elements of $\mathcal{L}(V, V) = \mathcal{L}(V)$ Prove that $f \circ g$ is invertible. What is the inverse of $f \circ g$?
- 5. Suppose $f \in \mathcal{L}(W, V)$ is a linear transformation between two finite-dimensional vector spaces. Let $\mathcal{C} = (w_1, \dots, w_n)$ be a basis for W, and let \mathcal{B} be a basis for V. Let $A = [f]_{\mathcal{B} \leftarrow \mathcal{C}}$. Show that the column space of A is equal to the image of f.

(Concretely, suppose that $v \in V$. Show that $v \in im(f)$ if and only if $[v]_{\mathcal{B}} \in col(A)$.)

Professor Jeff Achter Colorado State University M369 Linear Algebra Spring 2006