Homework 3 Due: Friday, February 24

1. Consider the following vectors in \mathbb{R}^2 :

$$x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $y = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ $z = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$.

In each case, is there a linear transformation $\mathbb{R}^2 \to \mathbb{R}^2$ which maps the vectors x, y and z as prescribed? Explain. (Hint: $\{x, y\}$ is a basis for \mathbb{R}^2 .)

- (a) $x \mapsto (2,3)^T; y \mapsto (0,1)^T; z \mapsto (1,5)^T$.
- (b) $x \mapsto (2,3)^T; y \mapsto (0,1)^T; z \mapsto (2,5)^T.$
- (c) $x \mapsto (1,1)^T; y \mapsto (0,1)^T; z \mapsto (3,3)^T$.
- 2. Suppose that $f \in \mathcal{L}(W, V)$ is surjective and that w_1, \dots, w_n spans W. Prove that $f(w_1), \dots, f(w_n)$ spans V.
- 3. Prove that there does not exist a linear map from \mathbb{R}^5 to \mathbb{R}^2 whose null space is

$$U = \{(x_1, x_2, x_3, x_4, x_5)^T : x_1 = 3x_2, x_3 = x_4 = x_5\}.$$

(Hint: What is dim *U*?)

4. Consider the following vectors in \mathbb{R}^2 :

$$u_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 $u_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ $v_1 = \begin{pmatrix} 14 \\ 22 \end{pmatrix}$ $v_2 = \begin{pmatrix} 9 \\ 14 \end{pmatrix}$

Let $\mathcal{B} = (u_1, u_2)$ and $\mathcal{C} = (v_1, v_2)$; each one is a basis for \mathbb{R}^2 .

(a) Express u_1 and u_2 in terms of the basis C, and do the same for v_1 and v_2 in terms of B. That is, compute:

 $[u_1]_{\mathcal{C}}, [u_2]_{\mathcal{C}}, [v_1]_{\mathcal{B}}, [v_2]_{\mathcal{B}}.$

- (b) What is $[id]_{\mathcal{C}\leftarrow\mathcal{B}}$?
- 5. Recall that $\mathcal{P}_3 = \mathcal{P}_3(\mathbb{R})[z]$ is the vector space of polynomials of degree at most 3. Let $\mathcal{B} = \{1, z, z^2, z^3\}$; let $\mathcal{C} = \{1, 2z, 3z^2, 4z^3\}$. Each is a basis of \mathcal{P}_3 . Let $D : \mathcal{P}_3 \to \mathcal{P}_3$ be the function $f(z) \mapsto f'(z)$.
 - (a) Show that *D* is a linear transformation.
 - (b) What is $[D]_{\mathcal{B}\leftarrow\mathcal{B}}$?
 - (c) What is $[D]_{\mathcal{C}\leftarrow\mathcal{B}}$?

Professor Jeff Achter Colorado State University M369 Linear Algebra Spring 2006