Homework 3

Due: Friday, February 24

1. Consider the following vectors in \mathbb{R}^{2} :

$$
x=\binom{1}{0} \quad y=\binom{1}{2} \quad z=\binom{3}{4} .
$$

In each case, is there a linear transformation $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which maps the vectors x, y and z as prescribed? Explain. (Hint: $\{x, y\}$ is a basis for \mathbb{R}^{2}.)
(a) $x \mapsto(2,3)^{T} ; y \mapsto(0,1)^{T} ; z \mapsto(1,5)^{T}$.
(b) $x \mapsto(2,3)^{T} ; y \mapsto(0,1)^{T} ; z \mapsto(2,5)^{T}$.
(c) $x \mapsto(1,1)^{T} ; y \mapsto(0,1)^{T} ; z \mapsto(3,3)^{T}$.
2. Suppose that $f \in \mathcal{L}(W, V)$ is surjective and that w_{1}, \cdots, w_{n} spans W. Prove that $f\left(w_{1}\right), \cdots$, $f\left(w_{n}\right)$ spans V.
3. Prove that there does not exist a linear map from \mathbb{R}^{5} to \mathbb{R}^{2} whose null space is

$$
U=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)^{T}: x_{1}=3 x_{2}, x_{3}=x_{4}=x_{5}\right\}
$$

(Hint: What is $\operatorname{dim} U$?)
4. Consider the following vectors in \mathbb{R}^{2} :

$$
u_{1}=\binom{1}{2} \quad u_{2}=\binom{3}{4} \quad v_{1}=\binom{14}{22} \quad v_{2}=\binom{9}{14}
$$

Let $\mathcal{B}=\left(u_{1}, u_{2}\right)$ and $\mathcal{C}=\left(v_{1}, v_{2}\right)$; each one is a basis for \mathbb{R}^{2}.
(a) Express u_{1} and u_{2} in terms of the basis \mathcal{C}, and do the same for v_{1} and v_{2} in terms of \mathcal{B}. That is, compute:

$$
\left[u_{1}\right]_{\mathcal{C}},\left[u_{2}\right]_{\mathcal{C}},\left[v_{1}\right]_{\mathcal{B}},\left[v_{2}\right]_{\mathcal{B}} .
$$

(b) What is $[\mathrm{id}]_{\mathcal{C} \leftarrow \mathcal{B}}$?
5. Recall that $\mathcal{P}_{3}=\mathcal{P}_{3}(\mathbb{R})[z]$ is the vector space of polynomials of degree at most 3 .

Let $\mathcal{B}=\left\{1, z, z^{2}, z^{3}\right\} ;$ let $\mathcal{C}=\left\{1,2 z, 3 z^{2}, 4 z^{3}\right\}$. Each is a basis of \mathcal{P}_{3}.
Let $D: \mathcal{P}_{3} \rightarrow \mathcal{P}_{3}$ be the function $f(z) \mapsto f^{\prime}(z)$.
(a) Show that D is a linear transformation.
(b) What is $[D]_{\mathcal{B} \leftarrow \mathcal{B}}$?
(c) What is $[D]_{\mathcal{C} \leftarrow \mathcal{B}}$?

