Homework 2

Due: Friday, February 10

Remark: We're now writing vectors as column vectors, but it's still easier to typeset things as row vectors. Do get around this, I will sometimes describe the transpose of a vector, rather than the vector itself. Thus,

$$
(1,2,3)^{T} \text { means }\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Warmup: For what value(s) of h is $(1,-2, h)^{T}$ in $\operatorname{span}\left((3,4,5)^{T},(-1,-3,2)^{T}\right)$? (You need not hand this in.)

1. Which of the following sets are spanning sets for \mathbb{R}^{3} ? In each case, if the set spans \mathbb{R}^{3}, prove it; if not, write down a vector which is not in the span of the set in question.
(a) $\left\{(1,1,1)^{T}\right\}$
(b) $\left\{(1,2,0)^{T},(0,1,0)^{T},(0,2,1)^{T}\right\}$
(c) $\left\{(1,2,0)^{T},(0,1,0)^{T},(0,2,1)^{T},(1,2,3)^{T}\right\}$
(d) $\left\{(1,2,-2)^{T},(2,3,-2)^{T},(2,2,0)^{T},(3,4,-2)^{T}\right\}$
(e) $\left\{(1,2,-2)^{T},(2,3,-2)^{T},(2,2,0)^{T}\right\}$

Sometimes you'll be able to get from one part to the next by thinking, instead of computing!
2. Let $v_{1}, \cdots, v_{m} \in V$ be a linearly independent list of vectors. Suppose that $v \in V$. Prove that $\left\{v_{1}, \cdots, v_{m}, v\right\}$ is linearly independent if and only if $v \notin \operatorname{span}\left(v_{1}, \cdots, v_{m}\right)$.
3. Let $V=\left\{f \in \mathcal{P}_{3}(\mathbb{R}): p(1)=0, p(-1)=0\right\}$. You may use the fact that $\operatorname{dim} V=2$.
(a) Find two linearly independent elements in V.
(b) Carefully prove that the elements you found in part (a) must span V.
4. Extend the set $\left\{1+z+z^{4}, z+z^{3}\right\}$ to a basis of $\mathcal{P}_{5}(\mathbb{R})[z]$.
5. Suppose that $\operatorname{span}\left(u_{1}, \cdots, u_{m}\right)=V$. Prove that there is some subset of the u_{i} which is a basis for V.

