Homework 11 Due: Friday, May 5

- 1. Let *V* be an inner-product space.
 - (a) Suppose that $T \in \mathcal{L}(V)$. Show that T^*T is self-adjoint.
 - (b) Suppose that $S \in \mathcal{L}(V)$ satisfies $S^2 = T^*T$. Show that for all $v \in V$,

 $\|Tv\| = \|Sv\|.$

- 2. Let *V* be a finite-dimensional inner product space. Suppose that *S* and *T* are both isometries of *V*.
 - (a) Prove that *ST* is an isometry of *V*.
 - (b) Is it true that S + T is an isometry of *V*? Prove or give a counterexample.
- 3. Suppose *V* is a finite-dimensional inner product space, $T \in \mathcal{L}(V)$ is self-adjoint, λ is a number, and $\epsilon > 0$. Suppose there exists a $v \in V$ such that ||v|| = 1 and

$$\|Tv-\lambda v\|<\epsilon.$$

Prove that *T* has an eigenvalue λ' such that $|\lambda - \lambda'| < \epsilon$. (HINT: *Start with an orthonormal basis of eigenvectors* $\{e_1, \dots, e_n\}$ *for V, and express v and T in terms of those vectors. In fact, this result is also true for infinite-dimensional vector spaces.*)

4. Let \mathcal{E} be the standard basis on \mathbb{R}^3 . Let $T \in \mathcal{L}(\mathbb{R}^3)$ be the operator whose matrix, in the standard basis, is

$$[T]_{\mathcal{E}} = \begin{pmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{pmatrix}$$

Verify that the minimal polynomial of *T* is (x - 1)(x - 2).

5. Let \mathcal{E} be the standard basis on \mathbb{R}^3 , and suppose that $T \in \mathcal{L}(\mathbb{R}^3)$ has

$$[T]_{\mathcal{E}} = \begin{pmatrix} 0 & 0 & c \\ 1 & 0 & b \\ 0 & 1 & a \end{pmatrix}$$

- (a) What is the characteristic polynomial of *T*?
- (b) What is the minimal polynomial of *T*?

Professor Jeff Achter Colorado State University M369 Linear Algebra Spring 2006