Homework 11

Due: Friday, May 5

1. Let V be an inner-product space.
(a) Suppose that $T \in \mathcal{L}(V)$. Show that $T^{*} T$ is self-adjoint.
(b) Suppose that $S \in \mathcal{L}(V)$ satisfies $S^{2}=T^{*} T$. Show that for all $v \in V$,

$$
\|T v\|=\|S v\| .
$$

2. Let V be a finite-dimensional inner product space. Suppose that S and T are both isometries of V.
(a) Prove that $S T$ is an isometry of V.
(b) Is it true that $S+T$ is an isometry of V ? Prove or give a counterexample.
3. Suppose V is a finite-dimensional inner product space, $T \in \mathcal{L}(V)$ is self-adjoint, λ is a number, and $\epsilon>0$. Suppose there exists a $v \in V$ such that $\|v\|=1$ and

$$
\|T v-\lambda v\|<\epsilon .
$$

Prove that T has an eigenvalue λ^{\prime} such that $\left|\lambda-\lambda^{\prime}\right|<\epsilon$. (HINT: Start with an orthonormal basis of eigenvectors $\left\{e_{1}, \cdots, e_{n}\right\}$ for V, and express v and T in terms of those vectors. In fact, this result is also true for infinite-dimensional vector spaces.)
4. Let \mathcal{E} be the standard basis on \mathbb{R}^{3}. Let $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ be the operator whose matrix, in the standard basis, is

$$
[T]_{\mathcal{E}}=\left(\begin{array}{ccc}
5 & -6 & -6 \\
-1 & 4 & 2 \\
3 & -6 & -4
\end{array}\right)
$$

Verify that the minimal polynomial of T is $(x-1)(x-2)$.
5. Let \mathcal{E} be the standard basis on \mathbb{R}^{3}, and suppose that $T \in \mathcal{L}\left(\mathbb{R}^{3}\right)$ has

$$
[T]_{\mathcal{E}}=\left(\begin{array}{lll}
0 & 0 & c \\
1 & 0 & b \\
0 & 1 & a
\end{array}\right)
$$

(a) What is the characteristic polynomial of T ?
(b) What is the minimal polynomial of T ?

