Homework 10
Due: Friday, April 28

1. Let V be an inner product space, and suppose that $S, T \in \mathcal{L}(V)$. Show that $(S+T)^{*}=$ $S^{*}+T^{*}$.
2. Consider $\mathcal{P}_{2}(\mathbb{R})$, the vector space of real polynomials of degree at most 2 . We will work with the usual basis $\mathcal{B}=\left\{1, x, x^{2}\right\}$ for $\mathcal{P}_{2}(\mathbb{R})$.
Define an inner product by

$$
\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x
$$

Let T be the linear transformation

$$
T\left(a_{2} x^{2}+a_{1} x+a_{0}\right)=a_{1} x
$$

(a) Show that T is not self-adjoint. (By going back to the definition of the adjoint, you can do this without actually computing the full adjoint of T.)
(b) Calculate the matrix $A=[T]_{\mathcal{B}}$.
(c) The matrix you found is equal to its own conjugate transpose; $A=A^{*}$. Still, T is not self-adjoint. Explain why this it not a contradiction.
3. Suppose $T \in \mathcal{L}(V)$ is self-adjoint, and that λ and μ are distinct eigenvalues. Suppose that λ and μ are distinct eigenvalues of T, with corresponding eigenvectors u and v, respectively. Show that u and v are orthogonal.
4. Consider $V=\mathbb{R}^{2}$ with the standard inner product. Give an example of a linear transformation T and a one-dimensional subspace U such that U is invariant under T, but U^{\perp} is not invariant under T.
5. The following problem has nothing to do with adjoints. Let V be a vector space, and $T \in \mathcal{L}(V)$.
(a) Show that for all k, null $T^{k} \supseteq$ null T.
(b) Show that for all $k, \operatorname{im} T^{k} \subseteq \operatorname{im} T$.
(Hint: Start with $k=2$; the rest is easy.)

