Homework 1

Due: Friday, February 3

Remark: Here is the notation we will use for certain fundamental vector spaces.

- $\mathcal{C}[0,1]$ is the set of continuous, \mathbb{R}-valued functions on the unit interval. $\mathcal{C}[a, b]$ is defined analogously.
- $\mathcal{C}^{\infty}[-\infty, \infty]$ is the set of infinitely differentiable functions from \mathbb{R} to \mathbb{R}.
- $\mathcal{P}(\mathbb{R})[z]$ is the set of polynomials with real coefficients in a variable z.
- $\mathcal{P}_{d}(\mathbb{R})[z]$ is the set of polynomials with real coefficients in a variable z of degree at most d.

1. Let V be a vector space, and let U and W be subspaces.
(a) Prove that the intersection $U \cap W$ is also a subspace of V.
(b) Given an example showing that $U \cup W$ need not be a subspace of V.
2. Given an example of a vector space V and a subset U such that U is closed under scalar multiplication, but U is not a subspace of V.
3. Each of the following describes a subset S of a vector space V. (You may assume that V really is a vector space.) In each case, is S a subspace of V ? Justify your answer.
(a) $V=\mathbb{R}^{3}, S=\{(0, a, b): a, b \in \mathbb{R}\}$.
(b) $V=\mathbb{R}^{3}, S=\{(1, a, b): a, b \in \mathbb{R}\}$.
(c) $V=\mathcal{C}[0,5], S=\{f \in V: f(2)=3\}$.
(d) $V=\mathcal{C}[0,5], S=\{f \in V: f(2)=0\}$.
(e) $V=\mathcal{C}^{\infty}[-\infty, \infty], S=\left\{f \in V: f^{\prime}(x)-f^{\prime \prime}(x)=0\right\}$. (Hint: Don't compute the set S explicitly!)
(f) $V=\mathcal{C}[-1,1], S=\{f \in V: f(-x)=f(x)\}$.
4. Prove that a finite list of vectors which contains the zero vector is linearly dependent.
5. Suppose that v_{1}, \cdots, v_{n} are elements of a vector space. Prove that

$$
\operatorname{span}\left(v_{1}-v_{2}, v_{2}-v_{3}, \cdots, v_{n-1}-v_{n}, v_{n}\right)=\operatorname{span}\left(v_{1}, v_{2}, \cdots, v_{n}\right) .
$$

