Homework 9
 Due: Friday, April 19

In class, we described the symmetries of the square as

$$
\operatorname{Sym}(\square)=\left\{I, R, R^{2}, R^{3}, H, H R, H R^{2}, H R^{3}\right\} .
$$

1. There are two "diagonal reflection" elements in $\operatorname{Sym}(\square)$:

$$
\left.\begin{array}{l|}
\hline \left.\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array} \right\rvert\,
\end{array} \stackrel{\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}}{\left.\begin{array}{ll}
1 & 4 \\
2 & 3
\end{array} \right\rvert\,} \mapsto \begin{array}{ll}
3 & 4 \\
2 & 1
\end{array} \right\rvert\,
$$

Express each of them as $H^{i} R^{j}$ for suitable i and j.
2. Write out a complete Cayley table ("multiplication table") for Sym(\square).
3. If G is a group and $g \in G$, the order of g is the smallest positive number g such that

$$
g^{n}=e .
$$

(Note: It may be that there is no such positive number, in which case we say g has infinite order.)

Find the order of each element of $\operatorname{Sym}(\square)$.
4. If G is a group, its center, $Z(G)$, is

$$
Z(G)=\{z \in G: \text { for each } g \in G, z g=g z\}
$$

What is $Z(\operatorname{Sym}(\square))$?

