Homework 8

Due: No.

No homework officially due this week; but working through these problems, as well as going over earlier homework, might help you study for the midterm.

1. Converse to HW7\#6 Let R be a commutative ring with identity, and let $I \subseteq R$ be an ideal. Suppose R / I is not an integral domain. Show that there are elements $a, b \in R$ such that $a \notin I, b \notin I$, but $a b \in I$.
An ideal P is called a prime ideal if, whenever $a b \in P$, at least one of a or b is in P. We have shown that R / P is an integral domain if and only if P is prime.
2. Let F be a field, let $g(x) \in F[x]$ be a polynomial of degree $d \geq 1$, and let $I=g(x) F[x]$.

Show that if $f(x) \in F[x]$, then there is a unique polynomial $r(x)$ such that $\operatorname{deg} r<d$ and $[f(x)]=[r(x)]$ in $F[x] / I$.
3. Consider the two rings

$$
\begin{aligned}
R & =\mathbb{Z}_{3}[x] /\left(x^{2}+1\right) \\
S & =\mathbb{Z}_{5}[x] /\left(x^{2}+1\right)
\end{aligned}
$$

(a) How many elements does R have? How many elements does S have? (Hint: Use (2))
(b) Exactly one of R and S is an integral domain. Which is it? Why? (Hint: Use (11).) In fact, we showed in class that any finite integral domain is actually a field!
4. Consider the ring homomorphism

$$
\begin{aligned}
& \mathbb{Q}[x] \xrightarrow{\phi} \mathbb{R} \\
& f(x) \longmapsto f(\sqrt{2}) .
\end{aligned}
$$

(a) Is ϕ injective? Surjective?
(b) What is $\operatorname{ker} \phi$? Prove your answer is correct.
(c) Consider the $\operatorname{map} \bar{\phi}: \mathbb{Q}[x] /(\operatorname{ker} \phi) \rightarrow \mathbb{R}$. Is $\bar{\phi}$ injective? Surjective?
5. [J]40(c).

