Homework 7 Due: Friday, March 29

- 1. Let ϕ : $R \rightarrow S$ be a ring homomorphism.
 - (a) Suppose that ϕ is injective. Show that ker $\phi = \{0\}$.
 - (b) Suppose that ker $\phi = \{0\}$. Show that ϕ is injective.
- 2. Suppose that $I \subset R$ is an ideal and $a \in I$. Show that $aR \subseteq I$. The book uses the notation $\langle a \rangle$ for *aR*.
- 3. [J]16.19.
- 4. Let *F* be a field. Show that every ideal in *F*[*x*] is principal. (HINT: *The proof is a lot like our proof of the analogous fact for* \mathbb{Z} *. Let I be a nonzero ideal, and let* $f(x) \in I$ *be an element of smallest degree. Show that* $I = \langle f \rangle$.)
- 5. (a) Give an example of a zero divisor in Z/6Z.
 (b) Give an example of a zero divisor in ℝ[x]/(x² − 1).
- 6. Let *R* be a commutative ring with identity. Let $I \subseteq R$ be an ideal. Suppose there are elements $a, b \in R$ such that $a \notin I, b \notin I$, but $ab \in I$.

Show that *R*/*I* is not an integral domain. (HINT: *Abstract from your examples in* (5).)