Homework 6
Due: Friday, March 15

1. (a) Show, by explicitly computing all relevant sums and products, that the function

is a ring homomorphism.
(b) Does this contradict Proposition 16.7.(3) of the text? Explain.
2. Let R be a ring. Recall that $0_{R} \in R$ is the unique element such that, for all $a \in R, a+0_{R}=$ $0_{R}+a=a$.
Suppose there are two elements $b, z \in R$ such that $b+z=b$. Show that $z=0_{R}$.
3. Let $\phi: R \rightarrow S$ be a ring homomorphism. Show that $\phi\left(0_{R}\right)=0_{S}$. (Hint: Use (2).)
4. Consider the ring homomorphism

$$
\begin{aligned}
& \mathbb{R}[x] \xrightarrow{\phi} \mathbb{R} \\
& f(x) \longmapsto f(0)
\end{aligned}
$$

(a) Suppose that $f(x)=x \cdot g(x)$ for some polynomial $g(x) \in \mathbb{R}[x]$. Show that $f(x) \in \operatorname{ker} \phi$.
(b) Conversely, suppose $f(x) \in \operatorname{ker} \phi$. Show that $f(x)=x q(x)$ for some polynomial $q(x)$. (Hint: Divide $f(x)$ by x as in Theorem 17.4. What can the remainder be?)

