Homework 5

Due: Friday, March 1

1. Let R be a commutative ring with identity, and let $S \subset R$ be a ring which also contains the multiplicative identity element.
(a) Suppose that R is an integral domain. Show that S is an integral domain.
(b) If R is a field, must S be a field? Explain.
2. Let R be a ring with identity. Suppose that $a \in R$ is a zero divisor. Show that a is not a unit.
3. Consider the ring \mathbb{Z}_{n}, and suppose $0<a<n$ satisfies $\operatorname{gcd}(a, n)=g>1$. Show that $[a]$ is not a unit in \mathbb{Z}_{n}. (Hint: Show that a is a zero divisor, and use 2)
4. (a) Compute $\left(5 x^{2}+3 x-4\right)\left(4 x^{2}-x+9\right)$ in $\mathbb{Z}_{12}[x]$.
(b) Compute $\left(5 x^{2}+3 x-4\right)\left(4 x^{2}-x+9\right)$ in $\mathbb{Z}_{10}[x]$.
5. [J]17.3(ab).
