Homework 4

Due: Friday, February 22

1. Consider the set of 2×2 matrices, $\operatorname{Mat}_{2}(\mathbb{R})$, equipped with the following binary operations:

$$
\begin{aligned}
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)+\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right) & =\left(\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right) \\
\left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right) \cdot\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right) & =\left(\begin{array}{ll}
a_{1} a_{2}+b_{1} c_{2} & a_{1} b_{2}+b_{1} d_{2} \\
c_{1} a_{2}+d_{1} c_{2} & c_{1} b_{2}+d_{1} d_{2}
\end{array}\right)
\end{aligned}
$$

(a) Show that these operations turn $\operatorname{Mat}_{2}(\mathbb{R})$ into a ring.
(b) What are the additive and multiplicative identity elements in this ring?
(c) Which elements have a multiplicative inverse?
2. Consider the set of 2×2 matrices, $\operatorname{Mat}_{2}(\mathbb{R})$, equipped with the following binary operations:

$$
\begin{aligned}
& \left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right)+\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1}+a_{2} & b_{1}+b_{2} \\
c_{1}+c_{2} & d_{1}+d_{2}
\end{array}\right) \\
& \left(\begin{array}{ll}
a_{1} & b_{1} \\
c_{1} & d_{1}
\end{array}\right) *\left(\begin{array}{ll}
a_{2} & b_{2} \\
c_{2} & d_{2}
\end{array}\right)=\left(\begin{array}{ll}
a_{1} a_{2} & b_{1} b_{2} \\
c_{1} c_{2} & d_{1} d_{2}
\end{array}\right)
\end{aligned}
$$

(a) Show that these operations turn $\operatorname{Mat}_{2}(\mathbb{R})$ into a ring.
(b) What are the additive and multiplicative identity elements in this ring?
(c) Which elements have a multiplicative inverse?
3. [J]16.1. For each part, if the set is a ring, just say so. If it's not a ring, give a short example explaining why. Similarly, if the set is a ring but not a field, write down an element with no multiplicative inverse.
4. [J]16.3(a)(b)(c).
5. Consider the ring of real polynomials $\mathbb{R}[x]$.
(a) Prove that $\mathbb{R}[x]$ is an integral domain.
(b) What are the units in $\mathbb{R}[x]$?

Bonus: Let R be a ring with additive identity 0_{R} and multiplicative identity 1_{R}. Show that if $0_{R}=1_{R}$, then R only has a single element.

