Homework 3

Due: Friday, February 15

1. [J]2.1.
2. (a) [J]2.5. (HINT: If N is divisible by 3 , then so is $N-3$.)
(b) Why does the same argument not show that each number $10^{n+1}+10^{n}+1$ is divisible by 9 ?
3. Here is another proof of the following result from class:

Theorem Suppose $a \geq b>0$. Then there are integers x and y such that $a x+b y=\operatorname{gcd}(a, b)$.
Actually, we don't need to assume a and b are positive; but it makes the writeup a little easier.
Let

$$
S=\{a m+b n: a m+b n>0, m \in \mathbb{Z}, n \in \mathbb{Z}\} .
$$

(a) Let d be the smallest element of S. Why does d exist?

Henceforth, let $d=a x+b y$.
(b) Write $a=q d+r$ where $0 \leq r<d$. Show that in fact $r=0$. (HINT: Show that if $r>0$, then $r \in S$. Why is this impossible?)
(c) Show that $d \mid a$ and $d \mid b$.
(d) Suppose e is any divisor of a and b. Show that $e \mid d$. (Hint: Write $a=e h$ and $b=e k$.)
4. [J]2.15(a)(b)(c).
5. Suppose a is an integer. Show that $\operatorname{gcd}(a, a+1)=1$.

