1. Recall (from day 1 ) the definition

$$
M(n)=2^{n}-1 .
$$

Consider the statement
If $n$ is prime, then $M(n)$ is prime.
(a) What is the contrapositive of this statement?
(b) What is the converse of this statement?
(c) What is the contrapositive of the converse of this statement?
(d) Which of these statements are true?
2. An integer $n$ can be written as

$$
n=4 q+r
$$

where $q$ and $r$ are integers and $r \in\{0,12,3\}$. (We will say that $n \equiv r \bmod 4$.)
Consider the statement:
If $m$ is an integer such that $m \equiv 2 \bmod 4$ or $m \equiv 3 \bmod 4$, then $m$ is not a perfect square.
(a) What is the contrapositive of this statement?
(b) Prove this contrapositive. (HINT: For each possible value of $r$, what is $(4 q+r)^{2} \bmod 4$ ?)

