Monday, September 15

1. In Arithmeticorum libri duo (1575), Maurolico shows that, for each positive integer n,

 $1 + 3 + 5 + \dots + (2n - 1) = n^2.$

Prove his statement by induction.

2. Recall that the Fibonacci numbers F_n are defined by

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-2} + F_{n-1}$ if $n \ge 2$.

Let

$$S_n = \sum_{j=1}^n F_j$$

= $F_1 + F_2 + \dots + F_n$

Prove that, for each *n*,

 $S_n=F_{n+2}-1.$

3. Prove by induction that, for each natural number *n*,

 $n < 2^{n}$.

Professor Jeff Achter Colorado State University Math 192: First Year Seminar Fall 2014