Friday, August 29

1. This problem is about the Pythagorean theorem.
(a) Consider an isosceles right triangle \triangle with side lengths a and a and hypotenuse length c.
i. Let \square be a square of side length c. Show how to divide \square into 4 copies of \triangle.
ii. Show that, in this case,

$$
a^{2}+a^{2}=c^{2} .
$$

(b) Consider a right triangle \triangle with side lengths a and b and hypotenuse length c; assume that $b>a$.
i. Let \square be a square of side length c. Show how to divide \square into 4 copies of \triangle and a square of side length $b-a$.
ii. Show that, in this case,

$$
a^{2}+b^{2}=c^{2} .
$$

2. Inscribe a circle of radius 1 in a regular hexagon.
(a) What is the area of an equilateral triangle whose perpendicular bisector has length 1 ?
(b) Use this to find an upper bound for π. Explain your reasoning.
3. Inscribe a regular hexagon inside a circle of radius 1.
(a) What is the area of an equilateral triangle whose sides have length 1 ?
(b) Use this to find a lower bound for π. Explain your reasoning.
4. The Pregel river through Königsberg, Prussia ${ }^{\text {* }}$ divided the city into two main regions and two islands. These four regions were connected by seven bridges.

Is it possible to take a walk which crosses each bridge exactly once? Explain.

[^0]
[^0]: *Now Kaliningrad, Russia

