Monday, August 25

- 1. For a natural number $n \ge 2$, draw *n* distinct points on a circle; draw a line segment connecting each pair of points; and let R(n) be the resulting number of regions in the disk.
 - (a) Compute R(n) for $n \in \{2, 3, 4, 5\}$.
 - (b) Conjecture a formula for R(n) in general.
 - (c) Check your conjecture for n = 6.
- 2. For each natural number n, let

$$M(n) = 2^n - 1.$$

- (a) Compute M(n) for $n \in \{2, 3, 4, 5, 6, 7, 8\}$.
- (b) Conjecture a relationship between the primality of n and the primality of M(n):

```
If n is prime, then M(n) is _____
```

while

If n is not prime, then M(n) is _____.

- (c) In the part (b), is it possible for just one of these statements to be true? Explain.
- (d) Prove one of the conjectures from (b).
- 3. The Fibonacci numbers F_n are defined by

$$F_0 = 0$$

 $F_1 = 1$
 $F_n = F_{n-2} + F_{n-1}$ if $n \ge 2$.

- (a) Compute F_n for $n \in \{1, 2, \dots, 10\}$.
- (b) For each natural number *n*, let

$$S_n = \sum_{j=1}^n F_j$$

= $F_1 + F_2 + \dots + F_n$

Compute S_n for $n \in \{1, 2, \dots, 10\}$.

(c) Give a conjectural formula for S_n in terms of the Fibonacci numbers.

Professor Jeff Achter Colorado State University Math 192: First Year Seminar Fall 2014