Monday, August 25

1. For a natural number $n \geq 2$, draw n distinct points on a circle; draw a line segment connecting each pair of points; and let $R(n)$ be the resulting number of regions in the disk.
(a) Compute $R(n)$ for $n \in\{2,3,4,5\}$.
(b) Conjecture a formula for $R(n)$ in general.
(c) Check your conjecture for $n=6$.
2. For each natural number n, let

$$
M(n)=2^{n}-1 .
$$

(a) Compute $M(n)$ for $n \in\{2,3,4,5,6,7,8\}$.
(b) Conjecture a relationship between the primality of n and the primality of $M(n)$:

If n is prime, then $M(n)$ is \qquad .
while

$$
\text { If } n \text { is not prime, then } M(n) \text { is }
$$

\qquad .
(c) In the part (b), is it possible for just one of these statements to be true? Explain.
(d) Prove one of the conjectures from (b).
3. The Fibonacci numbers F_{n} are defined by

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{n}=F_{n-2}+F_{n-1} \text { if } n \geq 2 .
\end{aligned}
$$

(a) Compute F_{n} for $n \in\{1,2, \cdots, 10\}$.
(b) For each natural number n, let

$$
\begin{aligned}
S_{n} & =\sum_{j=1}^{n} F_{j} \\
& =F_{1}+F_{2}+\cdots+F_{n}
\end{aligned}
$$

Compute S_{n} for $n \in\{1,2, \cdots, 10\}$.
(c) Give a conjectural formula for S_{n} in terms of the Fibonacci numbers.

