Homework 2

1. Use induction to prove that, for each positive integer n,

$$
\sum_{j=1}^{n} j^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

2. As in HW1\#1, for each natural positive integer n, draw n generic lines, and let $R(n)$ be the resulting number of regions in the plane.
Let $P(n)$ be the assertion that

$$
R(n)=\frac{\left(n^{2}+n+2\right)}{2}
$$

We will show that $P(n)$ holds for all n; we have already checked it for $1 \leq n \leq 4$.
(a) Suppose you've already drawn n lines, and then draw one more.

The n lines divide the last line up into pieces. How many pieces?
(b) How many new regions were created by drawing the last line?
(c) Suppose that $P(n)$ is true. Use parts (a) and (b) to prove that $P(n+1)$ is true.
(d) Conclude that $P(n)$ is true for all $n \geq 1$, by induction.
3. Recall the Fibonacci numbers F_{n} from HW1\#3. Use induction to show that, for each $n \geq 1$,

$$
\sum_{j=1}^{N} F_{j}^{2}=F_{N} F_{N+1}
$$

4. Let α be a positive real number. Use induction to show that, for each $n \geq 1$,

$$
(1+\alpha)^{n} \geq 1+n \alpha
$$

