Homework 1

Due: Monday, September 8

1. For a natural number n, draw n generic* ${ }^{*}$ lines. Let $R(n)$ be the resulting number of regions in the plane.
(a) Calculate $R(n)$ for $n \in\{1,2,3\}$.
(b) It turns out that R is represented by a quadratic polynomial; there are numbers a, b and c such that

$$
R(n)=a n^{2}+b n+c .
$$

Use the values of $R(1), R(2)$ and $R(3)$ to find three linear relations satisfied by a, b and c.
(c) Solve for a, b and c.
(d) Compute $R(4)$ by hand, and verify that it equals

$$
a \cdot 4^{2}+b \cdot 4+c
$$

2. (a) Euler considered the polynomial

$$
E(x)=x^{2}-x+41
$$

Compute $E(n)$ for some small integers n. What do you notice about the primality of $E(n)$?
(b) For a fixed integer k, define the polynomial

$$
E_{k}(x)=x^{2}-x+k
$$

Prove that $E_{k}(k)$ is never prime.
EXTRA: Do you think there is a nonconstant polynomial $p(x)$ such that $p(n)$ is always prime? Explain.
3. The Fibonacci numbers F_{n} are defined by

$$
\begin{aligned}
& F_{0}=0 \\
& F_{1}=1 \\
& F_{n}=F_{n-2}+F_{n-1} \text { if } n \geq 2 .
\end{aligned}
$$

Define

$$
T_{n}=F_{n}^{2}+F_{n+1}^{2} .
$$

(a) Compute T_{n} for $n \in\{1, \cdots, 10\}$.
(b) Conjecture a simple formula for T_{n}.

Extra Can you prove your conjecture?

[^0]4. Let \triangle be a right triangle with side lengths a and b, and hypotenuse length c. Prove the Pythagorean theorem, as follows.
(a) Draw a square \square whose sides have length $a+b$. Divide this \square into four copies of \triangle and a square of side length c.
(b) Calculate the area of \square in two different ways.
(c) Use this this to show that
$$
a^{2}+b^{2}=c^{2} .
$$
5. Consider a circle of diameter d; let A be its area.
(a) By inscribing the circle in a square of side length d, find an upper bound for A.
(b) By inscribing a square inside the circle, find a lower bound for A.
(c) In problem 10 of the Moscow papyrus $\rrbracket^{\dagger} A$ is approximated by the area of a square whose sides have length $\frac{8}{9}$. How does this estimate compare to the estimates in parts (a) and (b)?

[^1]
[^0]: *The lines are distinct; no pair of lines is parallel; no three lines meet at a single point.

[^1]: ${ }^{\dagger}$ An Egyptian manuscript, 3700 years old

