Part I: Short Answer Give a short answer to the following questions in the space provided. You do not need to show work.

1. x, 10, $x + 9$, $2x + 5$ and $x^2 - 55$ represent different positive integers, listed in order from least to greatest. What is the value of x?

Answer: __________________________

2. For all numbers a and b, let the operation \diamond be defined by $a \diamond b = b^2 - ab$. What is the value of $(1 \diamond 2) \diamond 3$?

Answer: __________________________

3. When four consecutive integers are added together, the result is -22. What is the greatest product that can be obtained by multiplying two of these 4 integers together?

Answer: __________________________

4. Let $f(x) = 2x^2 - 2x - 12$. What values of t are solutions of the equation $f(t - 2) = 0$?

Answer: __________________________

5. Jane is planning her next business trip. Each of her outfits consists of shoes, either a skirt or a pair of slacks, a blouse and a jacket or no jacket at all. If she packs 3 pairs of shoes, 3 skirts, 3 pairs of slacks, 6 blouses and 2 jackets, how many outfits will she have available on her trip?

Answer: __________________________
Part II: Long Answer Answer the following questions as completely as possible. Show all work for partial credit.

1. Let a, b, and c be integers such that

$$a + b\sqrt{2} + c\sqrt{3} = 0.$$

Show that $a = b = c = 0$.
2. Consider the “bogus cancellation”

\[
\frac{16}{64} = \frac{16}{64} = 1
\]

which miraculously works. Let \(a, b, c \in \{1, 2, 3, \ldots, 9\}\) be digits and assume that \(a \neq b\). Find all possible triples \((a, b, c)\) such that the bogus cancellation

\[
\frac{ab}{bc} = \frac{a}{b} = \frac{a}{c}
\]

works. (Here, \(ab\) and \(bc\) are not products, but rather the two digits numbers made of the digits \(a, b, c\).)
3. In coordinate three-space, consider nine points

\[P_1 = (x_1, y_1, z_1), P_2 = (x_2, y_2, z_2), P_3 = (x_3, y_3, z_3), \ldots, P_9 = (x_9, y_9, z_9) \]

and assume that all of their coordinates \(x_1, \ldots, x_9, y_1, \ldots, y_9, z_1, \ldots, z_9 \) are integers. Show that for some choice of \(i \neq j \), the midpoint \(M \) of the segment \(P_iP_j \) must also have integer coordinates.
4. For $i = 1, 3, 5, \ldots$, let T_i be an equilateral triangle with sides of length i. For each triangle, identify one side as its base, and call the vertex opposite the base its apex. Arrange the triangles in the xy-plane as shown, with all of their bases on the x-axis:

Show that there is a parabola containing the apexes of all of the triangles.
5. In the plane, assume that a circle S with center O is inscribed in a quadrilateral $ABCD$. (That is, each of the segments AB, BC, CD and DA are tangent to S.) Show that the measures of angles $\angle AOB$ and $\angle COD$ sum to 180°.
6. Let \(n \) be a natural number. Your vehicle is a gas-guzzling Buzzer B1 which needs one gallon of gas to go 10 miles and comes equipped with an empty 20-gallon gas tank. Your goal is to drive your Buzzer once around a 100-mile track. The challenge: 10 gallons of gas are divided into \(n \) different gas cans, which are placed at random points (known to you) around the track. Whenever you get to a gas can, you add its contents to your tank. Show that if you may choose where on the track you start, then you can always achieve your goal.