Compact Sets

$C \subset \mathbb{R}^n$

an "open cover" for C is a collection U of open sets with $C \subseteq \bigcup U$.

A subcover V is a subset of U that still covers C.

A "finite subcover" is one that has only finitely many elements.
Def A set \(C \) is called compact if every open cover of \(C \) has a finite subcover.

Lemma

a) If \(C \) is compact then \(C \) is bounded.

b) If \(C \) is compact then \(C \) is closed.

Proof

\(C \) is unbounded.

\[U_n = B(0, \infty) \]
\[U_n U_n = \mathbb{R}^m \quad \forall n \]

Cover. If

\[\bigcup_{n=1}^{N_1} U_1 \cap U_2 \cap \ldots \cap U_N = C \]

cover \(C \).

\[R = \max(N_1, \ldots, N_N) \]

\[C \subseteq B_{R}(\bar{a}) \]

\[\Rightarrow C \text{- bounded} \]

b) \(C \) is *not* closed.

so \(\exists \bar{a} \in \partial C \), \(\bar{a} \not\in C \).

\[U_n = \left(\left(B_{\frac{1}{n}}(\bar{a}) \right) \right) \quad \forall n \]

so

\[U = \bigcup_{n=1}^{\infty} U_n = \mathbb{R}^m - \sum a_i z_i \]

A cover - \(\bigcup_{\mathcal{J}} \) \(F \)
$U_{\eta_1} \cdots U_{\eta_k}$ cover C, then

Let $r = \min \{ \frac{1}{\eta_1}, \ldots, \frac{1}{\eta_k}\}$

$B_r(\overline{a}) \cap C = \emptyset$

$\Rightarrow \overline{a} \notin \partial C$.

$\Rightarrow \subseteq$

Thm. If $C \subseteq \mathbb{R}^n$ is closed & bounded

then it is cprf.

(Heine-Borel Thm.)

Def. We say C is "sequentially cprf"
if any sequence

\[a_i \] with values in \(C \)

has a convergent subsequence

\[a_{k_i} \to \bar{a} \in C. \]

Then \(C \subseteq \mathbb{R}^n \), i.e.,

sequence \(c_{p_{k_i}} \) if it

is closed and bounded.

Proof

a) \(C \) - unbounded

\[\Rightarrow \] not sequence \(c_{p_{k_i}} \).

Choose \(a_{i} \), \(\| a_{i} \| > i \).

b) \(C \) - not closed

\[\Rightarrow \] \(C \) - not sequence \(c_{p_{k_i}} \).

\[\exists \bar{a} \in \partial(C), \bar{a} \notin C. \]

\[\bar{a} \in \partial(C) \Rightarrow \exists a_{i}, \bar{a} \in C, \]

\[a_{i} \to \bar{a}. \]
as \(\bar{a} \in C \), no subs. of the \(\bar{a} \)'s can conv. to a pt of \(C \) - they all conv. to \(\bar{a} \).

c) \(C \) - closed + b.ded \(k \)

\(a_i \in C \); \(a_i \) has a conv. subregu. as \(a_i \) is b.ded

\(\bar{a}_i \rightarrow \bar{a}, \bar{a} \)

if \(\bar{a} \in C \) - done.

if \(\bar{a} \notin C \) -

\(\bar{a} \in dC \subseteq C. \)

\(\Rightarrow \subseteq. \)

Thm: Suppose

\(C \subseteq \mathbb{R}^n \), is \(\rho \)-c.

\(f: C \rightarrow \mathbb{R}^m \)
is continuous.

Then \(f(C) \) is CPCF.

\[f(C) \]

Suppose \(\mathcal{V} \) is an open cover for \(f(C) \).

Let
\[\mathcal{V} = \bigcup_{u \in \mathcal{V}} f^{-1}(u) \]

\(\mathcal{V} \) is an open cover for \(C \).

CPCF So \(\exists \)
\[V_1, \ldots, V_k \] cover \(C \).

\[\Rightarrow \]
\[f^{-1}(u_i) \] \(\Rightarrow \)
\[f^{-1}(u_i) = f(f^{-1}(A)) = A \]
\[\Rightarrow U_1, \ldots, U_k \] cover \(C \).
2nd pf

Show \(f(c) \) is seq. c.p.c.t.

Let \(a_i \in f(c) \)

Let \(b \in C \), \(f(b) = c \).

\(b \) has a conv subs.

\(b \rightarrow \overline{b} \in C \).

\(f \) is conv \(a + \overline{b} \).

\(\overline{c} = f(\overline{b}) \rightarrow f(\overline{b}) \in f(c) \).
If $C \subseteq \mathbb{R}^n$ is compact and $f : C \rightarrow \mathbb{R}$ is continuous, then f achieves a maximum and minimum on C.

If $f(C)$ is compact, hence closed and bounded, so $f(C)$ has a maximum and minimum.