Subsequences

\[a_k \text{ - sequence} \]

\[\bullet \quad \bullet \quad \bigcirc \quad \bigcirc \quad \bullet \quad \bullet \quad \bigcirc \]

Let \(k : \mathbb{N} \to \mathbb{N} \)
\[k^1 > k^2 \]

then
\[a_{k^i} = a_{k^i} \text{ is a } \]
\[\text{subsequence} \]

Lemma: If
\[\lim_{n \to \infty} a_n = L \]
\[a_k \text{ is a subsequence} \]

then \(\lim_{i \to \infty} a_{k^i} = L \).
Def: We say \(a_k \) is "increasing" if \(a_{k+1} > a_k \).

\(a_k \) is "decreasing" if \(a_{k+1} < a_k \).

Monotone if it is one of these.

Lemma

1) If \(a_k \) is increasing and bounded above then it converges.
2) If \(a_k \) is decreasing and bounded below then it converges.

pf \[L = \sup \{ a_k \} \]

Let \(\varepsilon > 0 \), \(\exists k \),

\[a_k \leq L < a_k + \varepsilon. \]
\[k \geq k \]

\[a_k \leq a_k \leq \frac{1}{k} < a_k + \epsilon \leq a_k + \epsilon \]

\[\Rightarrow |L - a_k| \leq \epsilon. \]

\[a_k \rightarrow L \]

Theorem. Every \(\mathbb{R} \)-valued sequence has a monotone subsequence.

Proof.

Case 1. \(a_k \) is unbounded above.
\[\exists \text{ subseq } \to \infty. \]

Case 2. \(a_k \) is unbounded below.
\[\exists \text{ subseq } \downarrow -\infty \]

Case 3. \(a_k \) are bounded.
\[\text{sup}(\{a_n\}) \text{ is not a max.} \]
Case 4 \(a \) is bounded \(\chi \) has a subsequence \(a_{n_k} \) whose sup is \(\mathrm{max} \).

\[\sup \left(\epsilon_0, \epsilon \right) \]

Case 5 \(a \) is bounded and for all subsequences, the sup is \(\mathrm{max} \).

\[\sup \left(a_{k_1}, a_{k_2}, \ldots \right) = a_{k_2} \]
\[\sup (a_k, a_{k+1}, a_{k+2}, \ldots) = a_{k+3} \]

\[\ldots \]

\[a_k \text{ decrease} \]

Cor. Every bounded sequence has a convergent subsequence.

Subsequential limit value

\[a_k \xrightarrow{\text{subsequential limit value}} \]

\[a_k \xleftarrow{\text{is a subsequential limit value}} \]

\[a_k \xrightarrow{\text{is a subsequential limit value}} L \]

Ex.

\[a_k = \sin \left(\frac{\pi k}{3} + \frac{1}{k} \right) \]
\[k - k = 1 \mod 3 \]
\[= 2 \mod 3 \]
\[= 0 \mod 3 \]

\[k = 1 \mod 3 \]
\[a_k = \sin \left(\frac{2\pi}{3} + \frac{1}{k} \right) \rightarrow \frac{\sqrt{3}}{2} \]

\[k = 2 \mod 3 \]
\[a_k = \sin \left(\frac{4\pi}{3} + \frac{1}{k} \right) \rightarrow -\frac{\sqrt{3}}{2} \]

\[k = 0 \mod 3 \]
\[a_k = \sin \left(\frac{\pi}{3} \right) \rightarrow 0 \]

\[\text{Ex} \]
\[\frac{1}{2}, \frac{1}{2}, 1, 0, \frac{1}{2}, 0, \frac{1}{2}, 1, \frac{1}{2}, 0, \frac{1}{2}, 1, \frac{1}{2}, 0 \]

\[a_k = \ldots \]
\[B_m = \sum_{k=1}^{\frac{n}{m}} \frac{1}{m} \left(\frac{z}{m} \right) \]

\[\alpha \in [0,1] \]

\[\exists \left(\alpha_k \right)_m \subset (0,1) \]

\[\left(\alpha_k - \alpha \right) < \frac{1}{m} \]

\[k_m \rightarrow k_{m+1} \]

\[\alpha_k \text{ is a subnet of } \alpha \]

\[\left| a_k - \alpha \right| < \frac{1}{m} \]

\[\lim_{m \rightarrow \infty} \left| a_k - \alpha \right| = 0 \]

\[a_k \rightarrow \alpha. \]

Hint

\[\lim_{m \rightarrow \infty} \frac{5}{a} \]

\[[a, b] \]

\[[a, a + \frac{b-a}{2}] \cup [a + \frac{b-a}{2}, b] \]

\[I \]

\[I_n \]
\[I_{i_1} S_{i_1} = I_{i_2} S_{i_2} = I_{i_3} S_{i_3} = I_{i_4} S_{i_4} \]

Assume \(I_{i_1} S_{i_1} \) is new.

\[I_{i_1} \cap I_{i_2} \cap I_{i_3} \cap I_{i_4} \]

\[I_{i_1} \cup S_{i_1} = I_{i_2} \cup S_{i_2} \cup S_{i_3} \cup S_{i_4} \]

\[x \in I_{i_1} \cap I_{i_2} \cap I_{i_3} \cap I_{i_4} \]