Dec 2

Content α vs Measure Ω

Note: If C is rectifiable of α-measure then it is of α-content.

Int. in 2-dim.

Direct product of sets

$A \times B$ sets.

$A \times B = \sum (a, b) ; a \in A$.

I, J — intervals in \mathbb{R}
\[I \times J = \text{Rectangle} \]
\[[a, b] \times [c, d] \]
\[\text{Partitions} - \]
\[P_i - \text{part. of } I \]
\[P_j - \text{part. of } J \]
\[P_i \times P_j \]
\[P = \prod_{i} I_i \times J_j : \bigcup_{i,j} P_{i,j} \]
\[= \sum_{i,j} R_{i,j} \]

Def. upper & lower sums

\[\overline{S}(f, P) = \sum_{i,j} M_{i,j} \cdot \text{Area}(R_{i,j}) \]
\[S(f, P) = \sum_{i,j} \min_{i,j} \text{Area}(B_{ij}) \]

\[U(f) = \{ \text{all upper sums} \} \]
\[L(f) = \{ \text{all lower sums} \} \]

\[I(f) = \inf_{B \subseteq J} I_B(f) \]
\[f \in \mathcal{F}(B) \]

\[I(f) = \sup_{B \subseteq J} I_B(f) \]
\[I_B(f) \geq I_B(f) \]

If \[I_B(f) = \inf_{B \subseteq J} I_B(f) \]

Then we say \(f \) is \(R. \text{int} \) on \(B \).
\[\int_{A} f \, dA = \left(\int_{a}^{b} \int_{c}^{d} f(x, y) \, dx \, dy \right) \]

\[D \text{ Mesh}(P) = \max \{ \text{Mesh}P_1, \text{Mesh}P_2 \} \]

Thm If \(f \) is bounded, then
\[0 < \varepsilon \rightarrow \exists \delta > 0 \]

\[f \text{ Mesh}(P) < \delta \]

then
\[0 \leq f(P) - \frac{1}{|P|} \leq \frac{f(P)}{\varepsilon} < \varepsilon \]

\[0 \leq \int_{B} f(x) - \int_{P} f(x) \leq \varepsilon, \]

Thm If \(f \) is bounded on the disc of \(f \) have content 0, then \(f \) is integrable.
Put A in a box! = Characteristic or Indicator function

\[
X_A : I_A \quad I_A
\]

\[
X_A(x) = \begin{cases}
1, & x \in A \\
0, & x \notin A
\end{cases}
\]

\[
\int_B f dA = \int_B X_A f dA
\]
Lemma \(A \subseteq \mathbb{R}^2 \),
\[
\text{dist} \left(X_A \right) = \partial A.
\]

pf. \(\pi \in \partial A \), \exists \: \chi \in A^c, \chi \rightarrow \pi

\[\text{but} \quad \lim_{\chi \rightarrow \pi} X_A(\chi) = 1\]
\[\lim_{\chi \rightarrow \pi} X_A(\chi) = 0\]

\[
X \in A^{-1}, \quad J \geq 0
\]
\[B_r(x) \subseteq A, \quad \text{once } \frac{\|x - \delta\|}{r} < 1\]
\[
X_A(x) = X_A(\delta)
\]

\[X \in (A^c)^{-1}, \quad \forall \delta \]
\[
\Rightarrow \exists \: r > 0
\]
Then suppose $A \subseteq \mathbb{R}^2$ is bounded. Then X_A is integrable iff \int_A has content 0.

Use $\int_A = \text{cpt}$.

Area

We say A is "measurable" if X_A is integrable i.e. \int_A has 0-content.

\[
B_r(x) \subseteq A^c.
\]
$$S(P, X_A) = \left(\text{sum of areas of all rect. that intersect } A \right)$$

$$\overline{S}(P, X_A) = \left(\text{sum of areas of all rect. cont. in } A \right)$$

$$I_B(X_A) - \text{outer area of } A,$$

$$\overline{I}_B(X_A) - \text{inner area of } A,$$