Course Syllabus, M617, Spring 2005 – Daniel J. Rudolph

Instructor: Daniel J. Rudolph (Dan), 203 Weber, rudolphd@math.colostate.edu
Office Hours: MW 2-3 or e-mail for an appointment.
Class meetings: MTWF 12:10-1:00 in E202 ENGR.

Course Content:
The Real Numbers:
 Arithmetic
 Order
 Completeness

Riemann Integration Theory:
 The Cauchy integral
 The Riemann integral
 The Riemann integral and limits
 Characterization of Riemann integrable functions
 Sets of measure zero
 Lebesgue’s characterization of Riemann integrability

Measure Theory:
 Some set theory
 σ-algebras and σ-rings
 Measures
 Outer measures
 Borel measures

Lebesgue Integration Theory:
 Measurable functions
 Integration of nonnegative functions
 Integration of general functions
 Modes of convergence
 Product measures and Fubini theorems
 Lebesgue Integration on \mathbb{R}^n and change of variables

Decomposition of Measures:
 Signed measures
 The Radon-Nikodym theorem
 The weak* topology and weak* convergence

L^p spaces:
 Basic theory
 The dual space
 Inequalities

Advanced Topics:
 To be determined by our interests and progress.

Text: We will start with Chapter 6 of Elementary Analysis: The Theory of Calculus
by Ross. I will announce where we will go for text material after that.
Course Syllabus, M617, Spring 2005 – Daniel J. Rudolph

Grading:
Homework will be assigned, collected and graded. You will be expected to correct your homework and resubmit it. There will be two midterm exams, the first once we finish the Riemann theory and the second after we finish the Lebesgue theory. There will be a two hour cumulative final exam on Wednesday May 11, 9:10-11:10. Your grade will be based on a 500 point scale, 100 points from homework, 100 points each for the midterms and 200 points on the final.

Course Format:
I will lecture on new material on MTW. The Friday class will be devoted to problem solving and your questions. As with any advanced mathematics course, there are two goals to the course, to learn the basic material of integration and measure theory and also to learn how to understand, think about and solve problems with this material. As we will use ideas from a variety of texts and perhaps at times from my notes only, it will be extremely important that you participate actively in class as you may not have a text to refer to for some material. I will expect very active class participation on Fridays, students will be expected to present solutions at the board and certainly to ask questions.