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Abstract

We construct generators for symplectic and orthogonal groups over residue class rings modulo
an odd prime power. These generators have been implemented and are available in the computer
algebra system GAP.
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1. Introduction

Let p be an odd prime. Consider a matrix J ∈ Mn(Z) which is non-singular modulo
p and for which JT = ±J . This matrix J then defines a bilinear form over the field Fp
with p elements, as well as over all residue class rings R = Z/qZ, q = pa. We will use Zq
as a shorthand for Z/qZ.

Let Fn(R) be the group of matrices preserving the form given by J , that is

Fn(R) =
{
A ∈Mn(R) | AT · J ·A = J

}
.

This group Fn(R) is called an orthogonal group if J is symmetric (J = JT ); it is called a
symplectic group if J is alternating (J = −JT ). Recent work in number theory by Jones
and Rouse (2010) motivates the study of symplectic groups Spn(Zq) where q is a proper
prime power.

If q is prime, generators for symplectic groups have been given in Taylor (1987).
Similarly generators for orthogonal groups are given in Rylands and Taylor (1998). The
purpose of this note is to show how to extend this result to obtain generators for these
groups over a ring R = Zq if q is a proper odd prime power. It can be viewed as
approximating quotients of the form-preserving groups over the p-adic numbers.
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2. Lifting Generators

The heart of the construction is the sequence of reduction homomorphisms that iter-
atively approximate Fn(Zpk) by quotient groups.

· · · → Fn(Zpk)→ · · ·Fn(Zp3)→ Fn(Zp2)→ Fn(Fp).

Our goal will be to construct generators for the groups by stepping through this sequence
from right to left, starting with the form-preserving group Fn(Fp) defined over the prime
field for which we assume that generators are known from Taylor (1987) and Rylands
and Taylor (1998).

We shall consider a single step in this sequence. Let q = pa, a > 1, r = pa−1, G =
Fn(Zq) and H = Fn(Zr). Reduction modulo r yields the homomorphism ϕ : G→ H. We
will represent elements of both groups using matrices with integer entries.

Consider an element h ∈ H, which is represented by a matrix B ∈ Mn(Z) such that
BT · J ·B ≡ J (mod r), that is BT · J ·B = J + r ·E for a suitable matrix E ∈Mn(Z).

We want to find a matrix C such that C ≡ B (mod r) and that CT · J · C ≡ J
(mod q).

With the ansatz C = B + r ·D (again assuming D ∈Mn(Z)) we get that

CT · J · C = (BT + r ·DT ) · J · (B + r ·D)

=BT · J ·B + r
(
DT · J ·B +BT · J ·D

)
+ r2 ·DT · J ·D

≡ J + r
(
E +DT · J ·B +BT · J ·D

)
(mod q).

The condition CT · J · C ≡ J (mod q) then becomes

r
(
E +DT · J ·B +BT · J ·D

)
≡ 0 (mod q).

Dividing by r, we can write this as

E +DT · J ·B +BT · J ·D ≡ 0 (mod p)

which for a fixed B (and E = 1
r (BT · J · B − J)) is a system of linear equations in the

entries of D.

We claim that for symmetric or alternating J this system has a solution:
First consider the case that J is alternating. Then E is alternating as well and the

condition becomes (setting X = DT · J · B) E ≡ −X + XT (mod p), which clearly has
a solution in setting X to be the negative upper triangular part of E.

If J is symmetric a similar argument holds: In this case E is symmetric and the
condition becomes E ≡ X +XT (mod p) (again with X = DT ·J ·B). We get a solution
for X as an upper triangular matrix whose off-diagonal entries are equal to those E, and
whose diagonal is half (using p 6= 2) the diagonal of E.

In either case we can solve modulo p for D from X, since we assumed J and B to be
invertible modulo p. This shows that in these two cases ϕ is surjective. (In general, ϕ is
not surjective, see the remark at the end of section 4.1.)

As p 6= 2 we observe that the condition of leaving the form invariant implies that
det(B) ≡ ±1 (mod r) and det(C) ≡ ±1 (mod q). As det(C) = det(B + r ·D) ≡ det(B)
(mod r) we thus have det(C) = det(B) + ry for some y ∈ Z. But then

1 ≡ (det(C))2 ≡ (det(B) + ry)2 ≡ det(B)2 + 2 det(B)ry ≡ 1 + 2 det(B)ry (mod q),
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and thus 2 det(B)ry ≡ 0 (mod q). As 2 det(B) is invertible modulo q, this implies that
ry ≡ 0 (mod q) and thus det(C) ≡ det(B) (mod q), that is the lifting process preserves
the values of determinants. In particular this implies kerϕ ≤ SLn(q) as in this case B = I
has determinant 1.

2.1. Description of kerϕ

To describe the kernel of ϕ, we set B = I (and thus get E = 0). This yields a
homogeneous system of equations

DT · J + J ·D ≡ 0 (mod p) (1)

If J is alternating (for J = −JT the condition simply states that JD must be symmetric)
the solution space of of this system has dimension n(n+1)

2 , that is |kerϕ| = p
n(n+1)

2 .

Similarly, if J is symmetric the solution space has dimension n(n−1)
2 and |kerϕ| = p

n(n−1)
2 .

The kernel of ϕ thus consists of elements of the form I + r ·D such that (1) holds. For
such an element C, we call D = 1

r (C − I) the r-relic. Multiplication in kerϕ happens by
addition of the elements r-relics, as

(I + rD1)(I + rD2) = I + r(D1 +D2) + r2D1D2 ≡ I + r(D1 +D2) (mod q).

Using this linearization we can calculate in kerϕ as a vector space over Fp.
This linearization in particular implies that kerϕ is an elementary abelian p-group;

thus the form preserving group Fn(R) is an iterated extension of copies of an Fp vector
space by Fn(Fp).

Lemma 1. The action of g ∈ G on k ∈ kerϕ is by conjugating the r-relic of k with the
image of g in Fn(p).

Proof. Let k ∈ kerϕ represented by I + rD ∈ Mn(Z) and g ∈ G, represented by C ∈
Mn(Z). As gkg−1 ∈ kerϕ, we can represent gkg−1 by I + rD̃ ∈Mn(Z) and have that

C + rCD ≡ C (I + rD) ≡
(
I + rD̃

)
C ≡ C + rD̃C (mod q)

thus CD ≡ D̃C (mod p), thus D̃ ≡ CDC−1 (mod p). 2

Corollary 2. Denote by ψ the reduction of Fn(Zq) modulo p. Then elements of kerψ
act trivially on kerϕ.

2.2. Obtaining Generators

We now use this lifting process to obtain generators. In each step (r = pa−1, q = pa) we
will assume that we have a generating set h = {hi} for H = Fn(Zr) and want to obtain a
generating set for G = Fn(Zq). Initializing in the first step with the known generators for
Fn(Zp) this step is repeated up to the desired value of q. As above, ϕ : G → H denotes
reduction modulo r.

The first part of the construction of a generating set for G is to obtain – using the
lifting process from section 2 – for each generator hi a pre-image gi ∈ G with gϕi = hi.
Together they form a set g = {gi}.

We now need to ensure that G = 〈g〉. This is equivalent to showing that kerϕ ⊂ 〈gi〉. If
kerϕ is known to be irreducible this is already guaranteed if we know that 〈g〉 ∩ kerϕ 6=
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〈1〉, which in turn is guaranteed if we know that G does not split over kerϕ. Both
conditions usually hold in the case of symplectic groups as will be shown in section 3
below.

In case this information is not available, we can test the condition directly: Solving
(1) provides a basis for kerϕ.

We then form a few (in examples often just one or two were sufficient) random elements
of kerϕ by evaluating relators for H in the gi and take the subgroup S ≤ kerϕ generated
by these elements. Suitable relators can be formed for example as wk where w is a short
word in the generators of H, and k the order of the element w(h) ∈ H obtained from
evaluating this word. (Removing randomness, we could use a presentation for H, initially
starting with the classical group modulo p, and for the next step transform this into a
presentation for G, using methods from Babai et al. (1997).)

We then use conjugation action of 〈g〉 (as we know thatG = 〈g, kerϕ〉 this is equivalent
to the action of G) to form the normal closure N of S under G. This calculation takes
place in kerϕ, and we can use the linearization, described after equation (1), to compute
a basis of N , using only linear algebra. If N 6= kerϕ we add sufficiently many elements
of kerϕ (computed as solutions of (1)) to g to obtain a generating set of G.

As we know the dimension (and thus the order) of kerϕ, this also yields |G| from |H|.
We will describe an algorithm, implementing this process, below in section 4

3. The structure of symplectic groups

The aim of this section is to show that in the case of symplectic groups (with the
exception of Sp2(Z9)) the lifted generators g are guaranteed to generate G. We will do
so (as already indicated in the previous section) by showing that kerϕ is irreducible and
that G does not split over kerϕ.

First consider irreducibility. From lemma 1, we see that the action of G on kerϕ is in
fact the adjoint representation of Spn(p). By Theorem 2.4.13 in Goodman and Wallach
(2009) this representation is irreducible for the complex Lie group Spn(C), and by Curtis
(1960) this result carries over to the corresponding Lie-type groups over finite fields.

In the remainder of this section we shall prove that G is in general not split over kerϕ.
In particular we shall prove the following:

Theorem 3. Let n be even, a ≥ 1, R = Zpa , J =

 In
2

−In
2

, G = Fn(R) = Spn(R)

the symplectic group, and ϕ : G→ Spn(Zpa−1) the reduction modulo pa−1.
Then G does not split over K = kerϕ, unless n = 2, p = 3, a = 2 in which case it

splits.

Again, we shall identify elements of the groups with matrices in Mn(Z).
We first consider the case of dimension n = 2, the result them will follow for larger

dimensions by lemma 6.
In the first step we show that the theorem holds once a > 2:

Lemma 4. If n = 2 and a > 2 then G is not split over K.
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Proof. Denote by L = {g ∈ G | g ≡ I (mod pa−2)} the kernel of the projection from
G onto Sp2(Zpa−2). Let v = 1 + pa−2. Then gcd(v, pa) = 1 and thus v−1 mod pa exists.
Consider the matrix

A =

 v 0

0 v−1

 mod pa.

Then we get that AT · J · A = J and A ≡ I (mod pa−2) but A 6≡ I (mod pa−1). This
means that A ∈ G, A ∈ L, but A 6∈ K.

By the binomial formula we have that vp ≡ 1+pa−1 (mod pa) and vp
2 ≡ 1 (mod pa).

Thus A represents an element of order p2.
If G were to split over K, then L would split over K as well. But by corollary 2 the

group L acts trivially on K. This would imply that L was elementary abelian, contra-
dicting the existence of an element of order p2. 2

We now consider the case a = 2 and larger primes:

Lemma 5. Theorem 3 is true for n = 2, a = 2 and p > 3.

Proof. Let B =

 1 0

−1 1

. Then B represents an element of order p in Sp2(p). Using the

method of section 2, we find that the pre-images of B in G = Sp2(Zp2) have the form

C =

 (1 + xp) zp

(−1− (x+ y)p), (1− (x+ z)p)

 for values x, y, z ∈ {0, . . . , p− 1}. Then

Ck ≡

 (1 + kxp− k(k−1)
2 zp) kzp

(−k − k(x+ y)p+ (k−1)k(k+1)
6 zp), (1− kxp− k(k+1)

2 zp)

 (mod p2).

(This is seen by an induction argument whose base case k = 1 is trivial, and whose step
follows immediately from a symbolic matrix multiplication modulo p2.) We note that the
formal fraction (k−1)k(k+1)

6 actually is an integer as one of the numerator factors must
be a multiple of 3 and at least one a multiple of 2. Similarly k(k+1)

2 is an integer.

Setting k = p in this formula we obtain that Cp ≡

 1 0

−p 1

 (mod p2).

That means that the order of the element represented by C is strictly larger than
p which in turn implies that the group 〈K,C〉 does not split over K (otherwise there
would be at least one lift C for B that had order p) and therefore G cannot split over K
either. 2

For p = 3, we consider the cases n = 4 and n = 2 explicitly: Construct Sp4(Z9)
(respectively Sp2(Z9)) using the method from the previous section. By acting on the
vectors of (Z9)4 (respectively (Z9)2) we obtain a faithful permutation representation of
the group of degree 6561 (respectively 81). We now can use the methods of (Holt et al.,
2005, Section 7.6.2) to test whether the group splits over kerϕ. An explicit calculation
in GAP (2012) shows that Sp2(Z9) splits over kerϕ, but Sp4(Z9) does not split.

We finally extend the result to arbitrary dimensions:
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Fig. 1. Illustration for the proof of lemma 6

Lemma 6. Let p be an odd prime, R = Zpa and n ≥ 4 even. Then Spn(R) is not split
over kerϕ.

Proof. Let p be an odd prime and n ≥ 4 even. If p > 3 we let m = 2, if p = 3 let m = 4.
From the previous calculations we already know that Spm(R) does not split over its kerϕ
and we thus can assume without loss of generality that n > m.

Consider the homomorphism

λ : Spm(R)→ Spn(R), g 7→


In−m

2

g

In−m
2


which is obviously injective. Let ϕn : Spn(R)→ Spn(Zpa−1) and ϕm : Spm(R)→ Spm(Zpa−1)
the reduction maps in both groups and letK = kerϕn,M = kerϕm andW = K · (Spm(R)λ)
(see figure 1).

Then Mλ ≤ K. Let

N =

I + pD

∣∣∣∣ (JD)T = JD, D =


∗ ∗ ∗

∗ 0m ∗

∗ ∗ ∗


 ,

that is N consists of those matrices in K whose central m ×m block is Im. As multi-
plication in K is done by addition of relics, N is a group. The conditions on D imply
that JD is symmetric and has the central m × m block zero, thus N has p-dimension
n(n+1)

2 − m(m+1)
2 . As N ∩ Spm(R)λ = 〈1〉 this means that N is a complement to Mλ

in K. Matrix multiplication shows that N is normal under Spm(R)λ, thus N � W and
W/N ∼= Spm(R). Let κ : W → Spm(R), then Kκ = M .

If Spn(R) were to split over K, then W also would have to split over K, denote a
complement by A. Then Aκ would be a complement to M = Kκ in Spm(R), contradic-
tion. 2

This concludes the proof of theorem 3.
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4. Algorithms

The lifting process described in section 2 is implemented by the following algorithm.
Again we represent elements of G = Spn(Zq) by integral matrices and represent elements
of kerϕ by their r-relic to consider kerϕ as an Fp vector space using (1). If X ∈Mn(Z),
det(X) 6≡ 0 (mod p) describes an element of G and D is a r-relic, the conjugation image
of I + rD under X then is described by its r-relic

γ(D,X) =
1
r

(
X−1 · (I + r ·D) ·X − I

)
(mod p).

Algorithm LiftFormPreserving(p,a,n,J,h)
Input: An odd prime p, An exponent a > 0, a dimension n > 0, a symmetric or

alternating matrix J ∈ Mn(Z) describing a bilinear form, A set of elements h ⊂
Mn(Z) that generate (when considering them as elements of Mn(Fp)) the subgroup
of GLn(p) preserving J .

Output: A set of matrices g ⊂Mn(Z) that generate the subgroup of GLn(Zpa) preserv-
ing J .

1: g := h; e := 1;r := p;
2: while e < a do
3: g := [];
4: for B ∈ h do
5: Let E = 1/r · (BT · J ·B − J);
6: By solving a system of linear equations modulo p (whose variables are the entries

in D), determine a single D ∈Mn(Z) such that

E +DT · J ·B +BT · J ·D ≡ 0 (mod p)

7: Append B + r ·D to g;
8: od;
9: if it is not known a priori that G = 〈g〉 then

10: Determine a basis k for the nullspace of the system of linear equations (whose
variables are the entries in D)

DT · J + J ·D ≡ 0 (mod p);

11: i := 1; s := [];
12: while i <= 10 and |s| < |k| do
13: Let A be a random product in g, using Celler et al. (1995);
14: Let o be the order of A as an element of GLn(Zpe); {use MatrixOrder routine

below.}
15: Let B := 1

r (Ao − I);
16: if B 6∈ 〈s〉Fp

(vector space span) then
17: Add B to s;
18: for D ∈ s do
19: for X ∈ g do
20: Let Y := γ(D,X);
21: if Y 6∈ 〈s〉Fp then
22: Add Y to s;
23: fi;
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24: od;
25: od;
26: fi;
27: i := i+ 1;
28: od;
29: if |s| < |k| then
30: Determine e ⊂ k, extending s to a basis s ∪ e of 〈k〉.
31: for E ∈ e do
32: Add (I + r · E) to g
33: od;
34: fi;
35: r := r · p; e := e+ 1;
36: fi;
37: od;
38: return g.

Lines 4-8 lift the known generators modulo r to generators modulo p · r. Line 10
determines kerϕ in linearized form. Lines 13-15 determine pseudo-random elements of
kerϕ. We consider this kernel as an Fp vector space, the subspace S spanned by the
elements found so far is given by the basis s. Lines 18-25 implement a basic spinning
algorithm (Holt et al., 2005, p.231) that forms the closure of S under the action of G
given by γ. Due to the choice of random elements, it is possible that not all of kerϕ
was found (though so far this has not happened in a single example tested), Lines 29-34
therefore add elements if necessary. (Again, one could add elements one-by-one and use
the spinning algorithm.)

4.1. Example

For Sp2(5), Taylor (1987) gives the generators and form

B1 =

 2 0

0 3

 ; B2 :=

 4 1

4 0

 ; J =

 0 1

−1 0

 .

In line 5 of the algorithm, we get corresponding values for E = 1/r · (BT · J ·B − J):

E1 =

 0 1

−1 0

 ; E2 =

 0 −1

1 0


Setting D =

 a b

c d

, the equation system in line 6 for E1 results in the equation

3a + 2d + 1 ≡ 0 (mod 5). We choose the solution D =

 1 0

0 3

, and thus get the first

generator G1 = B1 + 5 ·D =

 7 0

0 18

. Similarly we get from B2 and E2 the equation
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4b + c − 4d + 1 ≡ 0 (mod 5) with correcting matrix D =

 0 0

−1 0

 and generator

G2 = B2 + 5 ·D =

 4 1

−1 0

. The arguments from section 3 show that G1 and G2 are

generators of Sp2(25).

By modifying the example we see that for arbitrary ϕ we do not have surjectivity of

ϕ: Let J =

 0 1

4 0

, which is neither alternating, nor symmetric. Then Sp2(5) of course

remains the subgroup of GL2(5) preserving J . However working modulo 25, one gets (by
an explicit stabilizer computation in GL2(Z25)) that the group stabilizing J modulo 25
is 〈 2 0

0 13

 ,

 2 10

0 13

 ,

 13 0

10 2

〉
of order 500. The image this group under the reduction homomorphism ϕ has only order
4, showing that ϕ is not surjective in this case.

4.2. Element orders

The determination of matrix orders over finite fields can be done efficiently using the
linear algebra techniques of Celler and Leedham-Green (1997). Over residue class rings
these methods don’t immediately apply, which has the potential to make the determina-
tion of the order o in line 14 of the algorithm very costly. To avoid this bottleneck we
again use the factor structure given by reduction modulo smaller powers of p:

Consider the homomorphism ψ : G → GLn(Fp) given by reduction modulo p. To
determine the order of x ∈ G, we first determine the order a =

∣∣xψ∣∣ in the factor group
over a finite field. We then replace x by y = xa ∈ kerψ, clearly |x| = a · |y|.

By the remark following equation (1) we furthermore know that kerψ is composed from
p-elementary abelian layers. Consider the reduction ϕ modulo p2. Then either y ∈ kerϕ,
or yϕ has order p. In this second case we replace y by yp to descend to kerϕ. Iterating,
and remembering how often a p-th power was taken yields |y| as desired.

More formally, we get the following algorithm for element orders over Zpa :

Algorithm MatrixOrder(x,p,a)

Input: A matrix x ∈ GLn(Zpa).
Output: The multiplicative order of x.
1: Let y := x mod p ∈ GLn(Fp).
2: Let o := |y|. {using Celler and Leedham-Green (1997)}
3: Let z := xo. e := p
4: while e < pa do
5: e := e · p;
6: if z 6≡ I (mod e) then
7: o := o · p;
8: z := zp;
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9: fi;
10: od;
11: return o.

Proof. After each iteration of the while-loop z ≡ I (mod e), thus z = I when the
algorithm terminates. This is done by taking powers of z, which are accumulated in o.
So clearly |x| is a divisor of o. If |x| was strictly smaller, either the calculation of o in
line 2, or the congruence test in line 6 would have had to fail. 2

For example, let x =

 44 107

76 57

 ∈ GL2(Z53). Modulo 5 we have that x ≡ y ∈ GL2(5)

with |y| = 6. We set z = x6 mod 53 =

 101 75

100 26

. Then z ≡ I (mod 52), so in the

first iteration of the while-loop nothing happens. But z 6≡ I (mod 53), so we set z :=

z5 mod 53 =

 1 0

0 1

 and obtain order 6 · 5 = 30.

Using these routines, it is now easy to construct generating sets for particular geometric
conditions:

Algorithm SymplecticGenerators(n,pa)

Input: A dimension n > 0 and an odd prime power pa.
Output: A set of matrices g ⊂Mn(Z) that generate Spn(Zpa)./
1: Using Taylor (1987), determine generators h for Spn(p); Let J ∈ Mn(Z) be the

alternating matrix representing the form preserved by this group;
2: return the result of LiftFormPreserving(p,a,n,J,h)

By choosing different generating sets in line 1, one can get generators for general or
special orthogonal groups.

Functionality for such generating sets will be available in the computer algebra sys-
tem GAP (2012), in release 4.5.3 1 , using the functions
SymplecticGroup(dim,Integers mod q),
GeneralOrthogonalGroup(dim,sign, Integers mod q), and
SpecialOrthogonalGroup(dim,sign, Integers mod q).

5. Performance

The following table shows runtimes (in seconds on a 2.66GHz Mac Pro, time averages
over 10 runs) for constructing generators of Spn(Z3a) for some values of n and a. For
each increase of a by 1 the order of the group generated increases by a factor of 3n(n+1)/2,
i.e. for example Sp10(Z312) has order roughly 10314.

1 Note to reviewer: This release is not yet publicly available as of this writing, but I expect it will be so

before the paper is published.
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To illustrate the behavior of the test for kernel generation, these tests did not use
the shortcut in line 9 of the generator set algorithm (the property holds for symplectic
groups as shown in section 3).

n a=2 4 8 10 11 12 13 14 15 16 17 18

8 0.1 0.5 1.1 1.5 1.8 1.9 2.2 2.3 2.5 2.8 3.0 3.2

12 0.9 2.8 7.1 9.0 10 11 12 14 15 16 17 18

16 3.4 11 26 33 37 40 44 48 54 57 62 65

20 9.9 31 73 94 106 115 129 137 150 161 171 187
These runtimes are dominated by the spinning algorithm in lines 17-24 and corre-

spondingly scale roughly like n4 (n matrix multiplications at a cost of n3 each) and
linear in a (as there are a iterations in the main loop).

The behavior for other primes is similar.

If instead we use the shortcut in line 9, the runtimes reduce substantially, for example
the last column (for Spn(Z318)) the times become 0.2, 0.9, 3, 7 respectively, scaling roughly
like the n3 cost of solving a system of linear equations, but remaining linear in a.

While these times clearly leave space for improvement, this determination of group
generators is typically invoked only once in a longer calculation with the time for deter-
mining generators being negligible in comparison to the actual calculations done later.
Improvements therefore should concentrate on routines such as matrix arithmetic (in par-
ticular over residue class rings, for which improvements similar to the ones for element
order in section 4.2 might be possible) will have a more general impact.
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