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Abstract

This paper proposes to represent subgroups of finitely presented groups by their image in a quotient. It gives
algorithms for basic operations in this representation and investigates how iteration of this approach can be used to
extend known quotients groups with a solvable normal subgroup.

Traditionally, algorithms in group theory have represented a subgroupU of a finitely presented groupG either by
a set of generators (as words in the generators of the full group) or via a coset table.

Both representations have distinctive disadvantages: A coset table forU has[G:U ] rows, thus the space requirement
for storage can be substantial. Practically this restricts this representation to index a few million at most.

On the other hand, the representation via a generating set is not particularly suited to calculations and many
algorithms compute a coset table as a first step and then effectively work with the coset table, discarding the generating
set. Furthermore, for subgroups which are obtained as output of other algorithms, generating sets often are not what
a user wants: The standard way to obtain generators is as Schreier generators. As this is a process which “lives” in
a free group the number of generators produced grows linearly with the index, and any reduction of this number (if
possible at all) would require further work.

The first aim of this note is to introduce a different representation, namely as a subgroup of a quotient: Given a
groupG and a homomorphismϕ, we represent a subgroupU which is a full preimage underϕ by the pair(ϕ,Uϕ).
We callU aquotient subgroupand the pair(ϕ,Uϕ) thequotient representationof U .

Such representation comes naturally to systems such asMagnus[The New York Group Theory Cooperative],quotpic[Holt and Rees 1993]
or XGAP[Celler and Neunḧoffer 1999] with a graphical user interface in which subgroups are objects whose genera-
tors or coset table are (usually) never displayed.

We will show how such representations can be created, and how to calculate with subgroups in this representation.
We will then examine how this approach can be iterated in an attempt to extend known quotients.

The approach has been implemented by the author in the systemGAP [The GAP Group 2000] and is used there as
a default method for many operations for subgroups of finitely presented groups.

1 Creation of Quotient Representations and Easy calculations

If U ≤G is of finite index a Todd-Coxeter coset enumeration [Todd and Coxeter 1936] will yield a permutation repre-
sentationϕ of G on the cosets ofU . The image ofU is the stabilizer StabGϕ(1). So the quotient representation ofU is
(ϕ,StabGϕ(1)).

Similarly, the low-index subgroup algorithm [Sims 1994, 5.6] can be considered to produce admissible homo-
morphismsϕ into permutation groups, the quotient representation of the subgroups found is again of the form
(ϕ,StabGϕ(1)). A variant is the “G-quotient” algorithm [Holt and Rees 1992], [Hulpke 1996, V.5] that (by a sim-
ilar search) finds quotients isomorphic to a given group.
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Figure 1: A subdirect product

Quotient algorithms such as thep-Quotient [Macdonald 1974], Nilpotent Quotient[Wamsley 1974, Nickel 1996],
Solvable Quotient [Plesken 1987, Niemeyer 1994, Brückner 1998], and Polycyclic Quotient [Lo 1998] all return a
homomorphismϕ. Subgroups induced by this quotient are naturally given in quotient representation.

If ψ is a homomorphism with domainG, the quotient representation of kerψ is (ψ,〈〉). In particular, this permits
us to represent the intersections of the conjugates of a subgroup (whose index can ben! which makes coset tables very
space-consuming) in a quotient representation using the same homomorphismϕ.

This provides a natural way to represent commutator subgroups:G′ is the kernel of the epimorphism on the largest
abelian quotient (whose structure we obtain by abelianizing the presentation). IfN C G, the commutator subgroup
[G,N] has a quotient inG we obtain by adding the commutators[g,n] (for g andn running through a generating set of
G, respectivelyN) to the relators ofG. A lower central series is obtained by taking forϕ the epimorphism ofG onto
its largest nilpotent quotient (as found by a Nilpotent Quotient Algorithm)Q, the terms of the lower central series of
G are the preimages underϕ of the lower central series ofQ.

For a more complex example considerPSL2(Z) which is isomorphic to a free ProductC2 ∗C3. A congruence

subgroups such asΓ0(N) =
{(

a b
c d

) ∣∣∣∣ c≡ 0 (mod N)
}

is the pre image of the group of upper triangular matrices

under the “reduction-mod-N” homomorphism. So we can represent these subgroups (and calculate with them) in
quotient representation as subgroups ofC2∗C3.

If a subgroupU ≤G is given in quotient representation(ϕ,Uϕ), we can obtain the representation via a coset table
as well as subgroup generators easily (so the quotient representation will still permit use of all existing algorithms):

A coset table forU in G represents permutations for the action ofG on the cosets ofU . But this permutation action
has the same image as the action ofGϕ on the cosets ofUϕ and we can compute permutations for this action easily if
an element test inUϕ is available.

To compute generators ofU , we can then simply take this permutation action on the cosets, and compute Schreier
generators for it. It should be emphasized, however, that in almost all cases subgroup generators will not be required
for further calculations and are more of a space-consuming hindrance than of actual help.

For a membership test, observe thatx∈U if and only if xϕ ∈Uϕ, as kerϕ≤U .

2 Subdirect Products

Now assume thatU,V ≤G are subgroups given by the quotient representations(ϕ,Uϕ) and(ψ,Vψ). We setA := Gϕ
andB := Gψ and define a homomorphismε : G→ A×B, g 7→ (gϕ,gψ). Its kernel is the intersection(kerϕ∩kerψ).
The imageGε is asubdirect productof A andB [Remak 1930].

Denote the normal subgroup generated by both kernels byM = 〈kerϕ,kerψ〉. ThenM is mapped to two normal
subgroupsE := Mϕ C A andF := Mψ C B. By the homomorphism theorem we haveA/E ∼= G/M ∼= B/F . The
structure is displayed in picture 1.

If A andB are both represented as permutation groups, the direct productA×B can be represented again as a
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permutation group (on the disjoint union of the domains ofA andB) and we can use this representation to compute in
its subgroupGε. Similarly if A andB are both matrix groups over the same field,A×B can be represented as matrix
group again by block matrices. IfA andB are given by polycyclic presentations, we can easily write down a polycyclic
presentation ofA×B.

We now map a generating systemg = (g1, . . . ,gl ) under both projections and get generating systemsa := gϕ of A
andb := gψ of B. Let 〈x | R 〉 be a presentation forB on generatorsx corresponding tob. Then the epimorphism from
the free groupX = 〈x〉: β := (X→ B,x 7→ b) factors viaγ := (X→G,x 7→ g) asβ = γψ. The kernel kerψ thus is the
image of kerβ underγ, and thereforeE = (kerβ)γϕ.

For a subsetS ⊂G of a groupG, we denote by〈S〉NT thenormal closureof S , that is the smallest normal subgroup
of G containing all elements ofS .

By the definition of a presentation kerβ = 〈R 〉NT ThereforeE is the normal closure inA of the set{r(a) | r ∈ R }
of relators ofB evaluated ina. We call this subgroup thecokernelof the relationζ : B→ A obtained by extending the
mapping(b 7→ a) homomorphically.

To computeE, it is sufficient to have a procedure to evaluate a set of defining relators in given generators, there is
no need to actually write down a full presentation. Such a procedure is already available as part of the functionality
for computing kernels of homomorphisms [Leedham-Green et.al. 1991].

If v ⊂ B is a generating set ofVψ, thenV is generated by kerψ together with representatives of preimages ofv
underψ. ThereforeVϕ is the subgroup ofA generated byE and representatives of images ofv underζ.

Similarly F is the cokernel of the homomorphic closureξ of (a 7→ b) andUψ = 〈F,uξ | u∈ u〉 for a generating set
u of Uϕ.

We can therefore computeE,F , and the converse imagesUψ andVϕ directly from the constituentsA andB with
the generating seta andb. Furthermore, note thatUε ≤ A×B is the full preimage ofUψ under the projection form
Gε to A.

This gives us all the necessary input for the following computations:

Lemma 1. a) A quotient representation of U∩V is (ε,Uε∩Vε).

b) A quotient representation of〈U,V〉 is (ϕ,〈Uϕ,Vϕ〉).

c) A quotient representation of NU (V) is (ε,NUε(Vε)).

d) A quotient representation of
⋂

g∈GUg is (ϕ,
⋂

g∈Gϕ(Uϕ)g).

e) Representatives for the double cosetsU\G/V are given by (the preimages underϕ of) representatives for the
double cosetsUϕ\Gϕ/Vϕ.

Proof. As kerε ≤U,V, a) follows immediately. Similarly b) follows from kerϕ ≤U ≤ 〈U,V〉. For c) observe that
kerε≤V ≤ NG(V); d) follows as kerϕ≤

⋂
g∈GUg. Finally in e), the double cosets are orbits ofV on the cosets ofU ,

for which ϕ is a bijection.

To test containment, we do not need to form the subdirect product:

Lemma 2. V ≤U if and only if: 1. E≤Uϕ and 2. Vψ≤Uψ.

Proof. As kerψ≤V and because subset relations are preserved by homomorphisms 1. and 2. are certainly necessary.
Vice versa 1. implies thatkerψ ≤U . In this situation it is sufficient to test containment in the image ofψ, which

proves sufficiency of the criterion.

Inclusion in both directions gives an equality test.

2.1 Presentations for Subdirect Products

In the course of this paper we shall need a presentation for a subdirect product. The following approach must be
well-known; it is only given here, as I’ve not been able to find explicit literature references.

We consider a subdirect product of two finitely generated groupsA andB via an isomorphism of their factor groups
A/E with B/F and letϕ : ÂB→ A, ψ : ÂB→ B be the component projections. IfX is a generating set forÂB,
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X̂ = Xϕ andX̃ = Xψ are generating sets forA and forB. We assume we are given presentations for the constituent
groupsA∼= 〈X̂ | R 〉 andB∼= 〈X̂ | S〉 in these generators (script letters will be used to denote sets of relators). We shall
write w(X) do denote an abstract word inX.

Then kerϕ = 〈r(X) | r ∈ R 〉NT. By adding conjugates, we extend this set toY2 = {r(X)a | r ∈ R , somea∈ 〈X〉}
such thatF = (kerϕ)ψ = 〈Y2ψ〉. We denote byYB = Y2ψ the images ofY2 in B. Given the presentations forA andB
we can verify that enough conjugates are taken by checking that

[
B:〈YB〉

]
= [A:E]. Rewriting the presentation in these

subgroup generators we furthermore get a presentation〈Y2 | RF〉 for F . Finally, using rewriting in〈YB〉 ≤ B, we obtain
conjugation relationsRC = {yx = w(Y2) | y∈Y2,x∈ X̃}.

Lemma 3. A presentation for Â B is given by:

〈X,Y2 | y = w(X) (y∈Y2) (1)

r(Y2) (r ∈ RF) (2)

RC〉 (3)

where the relations (1) are the definitions of Y2 as words in X.

Proof. The relations given certainly hold inÂB as they were obtained fromÂB.
If we add relationsY2 = 1 to the given presentation, the relations of type (1) become conjugatesr(X)x (r ∈ R ,a∈

〈X〉) containing the whole ofR . The resulting group is thus generated byX and isomorphic toA.
The kernel of this projection ontoA is generated by conjugates ofY2, and relations of type (3) show that〈Y2〉 is

conjugation invariant. Furthermore the relations (2) show that〈Y2〉must be isomorphic to a factor group ofF .

Using Tietze transformations and the expressions (1) ofY2 as words inX, we can get rid of the auxiliary generators
Y2 and obtain a presentation in terms ofX.

Corollary 4. If F is a free group,R ,S are finite sets generating normal subgroups〈R 〉NT,〈S〉NTCF and
[
F :〈R ,S〉NT

]
is finite, the intersection〈R 〉NT∩〈S〉NTC F is finitely generated as a normal subgroup.

3 Iterated Quotient Representations

As mentioned above, ifU <G is given in quotient representation(ϕ,Uϕ), we can obtain a coset table forU in G from
the action ofGϕ on the cosets ofUϕ.

Using Reidemeister rewriting [Magnus et.al. 1966, 2.3], it is then possible to compute from this coset table a set of
generators ofU and a presentation in these generators [Havas 1974, Neubüser 1982]. (In practice, one would simplify
the resulting presentation using Tietze transformations before working with it.)

This new presentation (and the rewriting process for subgroup elements) thus enables us to evaluate homomor-
phisms with domainU . One can then again apply algorithms toU , obtaining subgroups ofU in quotient representa-
tion.

If V ≤U is such a subgroup, given by the quotient representation(α,Vα) with α defined onU , we want to get
a quotient representation forV as a subgroup ofG. We can achieve this using the embedding theorem for wreath
products [Krasner and Kaloujnine 1951]:

Let β be the permutation action ofG on the cosets ofU and setC = Uα andD = Gβ. We label the cosets ofU
in G from 1 to n = [G:U ] and pick coset representatives{r i} such thatr iβ maps 1 toi. Now we define a mapping
γ = α↑G(β) : G→C oD = C×n.D by:

γ : g 7→
((

r1 ·g· r−1
(1g)

)
α, . . . ,

(
r i ·g· r−1

(ig)

)
α, . . . ,

(
rn ·g· r−1

(ng)

)
α,gβ

)
∈C×n.D

(writing ix for i(xβ) and noting thatr ixr−1
(ix) ∈V).

Remark 5.If the image ofα is a permutation group,C oD can be represented as a permutation group again. Ifα is a
matrix representation,γ can be considered as the induced representationα↑G(β). (This proves thatγ is a homomorphism.)

In general the representation will be by tuples of elements with an appropriate multiplication. (Following a sug-
gestion of J. Neub̈user, these can be realized by “monomial type” matrices.)
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Let α̂ be the homomorphism defined onUγ defined by(uγ)α̂ = uα (this is well-defined as kerγ ≤ kerα). It is
surjective ontoC, so there is a subgroup̂V ≤Uγ which is the full preimage ofVα underα̂. The quotient representation
of V as a subgroup ofG therefore is(γ,V̂).

If α is a permutation action as well, andV is a point stabilizer in this action, the resulting imageV̂ is a point
stabilizer in the resulting permutation actionγ for the wreath product.

In practice, once we computed a presentation ofU , we will work with an isomorphic finitely presented groupÛ
and compute the further quotientα from the presentation of̂U .

Thus, to evaluateα on elements ofU ≤G we must express these elements as words in the generators ofU which
gave the presentation for̂U . This can be achieved by the same Reidemeister rewriting process used to compute a
presentation ofU in the first place.

Typically the rewritten presentation̂U will be unhandily large and one will apply Tietze transformations first to
shrink it (see the survey [Havas and Robertson 1993]). To keep the connection to the originalU one therefore has to
keep track of the Tietze transformations being done.

If the index ofU gets larger, a little bit of care has to be taken to avoid memory problems: By default the rewriting
yields a word that also uses “secondary” generators (these are defined as words in “primary” generators.) Expanding
these as words using only the primary generators can result in an exponential growth of the word lengths. Instead, we
compute the images ofall secondary generators underα and rewrite immediately as an element ofUα. If elements of
this image group are given in unique form (say as matrices or permutations) this exponential growth will not apply in
this representation.

Finally, some care has to be taken if we compute quotient subgroups ofV <U <G whenV itself had been given
by a quotient ofU . The way we found the quotients it would be tempting to rewrite elements ofV as elements ofG
via U . However this means that at an intermediate stage we would have to handle rewritten elements ofU as words,
which (as mentioned above) can become extremely long. Instead it is much quicker to create a new augmented coset
table forV and to rewrite using this table.

4 Polycyclic-by-finite groups

Definition 6. Let β : G→H be an epimorphism. A homomorphismδ : G→N.H with kerδ≤ kerβ andN∼= kerβ/kerδ
is called alift of β. We callN the lift kernelof δ.

Remark 7.Following the use in [Huppert 1967, Robinson 1996], we call an extension 1→ N→ N.H → H → 1 an
extension of N by H. (This means that the image group of a lift ofβ with lift kernel N is an extension ofN by Gβ.)

We now consider the situation that[G:U ] is finite, β is the permutation action ofG on the cosets ofU and that
a homomorphismα : U → Uα is obtained as a result of a polycyclic (or nilpotent) quotient algorithm applied to a
presentation forU . (For finite groups, “polycyclic” is equivalent to “solvable”.) ThenUα is polycyclic andγ : G→
Uα oGβ is a lift of β whose image is polycyclic-by-finite with the “finite” part given byGβ.

As polycyclic-by-finite groups are the largest class of groups for which an algorithmic theory is possible [Baumslag et.al. 1991]
a natural question which arises at this point is therefore whether this iterated quotient construction can help to expose
all polycyclic-by-finite factor groups ofG; respectively all such factors, where the top part is given by the imageGβ.

Certainly all such lifts can be found by computing polycyclic quotients forU = kerβ, indeed the embedding
theorem for wreath products is often given only for this situation (for example, see [Huppert 1967, 15.9]).

On the other hand the number of generators and relators for a subgroup presentation grows with the subgroup
index, and even reduction methods such as Reduced-Reidemeister-Schreier and Tietze transformations cannot remedy
this fully. Therefore the index of kerβ is often too big to make the computation of a presentation computationally
feasible. The algorithmic question we face is thus: Given a homomorphismβ, find a subgroupU ≥ kerβ of index as
small as possible, such that a quotient algorithm applied toU will find some (or all) finite by polycyclic factors that
lift Gβ. This gives rise to:

Definition 8. Assume there is a liftδ : G→ H of β whose lift kernelN = (kerβ)δ C H is a polycyclic group. Take
U ≤ G with kerβ ≤U . We say thatN is visible from U if there is a homomorphismα onU so that the imageUα is
polycyclic and that

⋂
g∈G(kerα)g≤ kerδ.

Certainly any polycyclicN is visible from kerβ. We also observe that visibility does not solely depend on the image
Uβ, but also on the type of the extension: Consider the case of 2.A6 and 2×A6. In both cases there is a factor group
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Gβ isomorphicA6 with normal subgroupN isomorphicZ2. We consider a subgroupU so thatUβ = StabA6(1)∼= A5.
In the first case, the image ofU in H is the perfect group 2.A5, so N is invisible fromU . In the second example,
however the image ofU in H is 2×A5, so there is a nontrivial solvable quotientα which makesN visible.

For the general situation, letδ be a lift ofβ andV := U (∞)δ = (Uδ)(∞) be the smallest normal subgroup ofUδ with
solvable factor. Then visibility ofN means thatK := V ∩N does not contain any nontrivial normal subgroup ofH.
We also setM := 〈V,N〉. SoUδ/M is the largest solvable quotient ofUδ/N ∼= Uβ. ThusM = Xδ whereX is the full
preimage of(Uβ)(∞) underβ. As intersection of two normal subgroups,K is normal inUδ, soUδ/K is a subdirect
product ofUδ/V with Uδ/N with common factorUδ/M. Picture 2 illustrates this situation.

Now consider the easiest nontrivial case: Assume thatN is a minimal normal subgroup ofH and thus is elementary
abelian. ThenN/K is abelian and thusM′ ≤V. FurthermoreN/K is central inM/K and thusV CM.

N is a module forGβ∼= H/N. When restricted (from being aGβ-module) toMβ, the moduleN has a trivial factor.
In other words: There is a subgroupW ≤U (we can set for exampleW := M) such thatU/W is solvable and that
Wβ is a subgroup of a vector stabilizer for the dual module ofN. Let L ≤ N be anMβ-submodule (consideringN
as anMβ-module by restriction) of codimension one with trivial factor module. AsV C M, the factorM/L has a
complement (namely〈V,L〉/L) to N/L.

Vice versa, letW≤G be a subgroup such thatWβ stabilizes a vector for the dual module ofN. Then there must be a
Wβ-submoduleL<N of codimension 1, and thusLCWδ. In the factorWδ/L, either the perfect residuum(Wδ/L)(∞)

intersects trivially withN/L (and soN is visible fromW and thus visible from anyU BW with U/W solvable) or it
containsN/L. In this second case, settingP := (Wδ)/L, we have thatN/L≤ Z(P)∩P′ andP∼= (N/L).(Wβ). We call
such an extension of a (nontrivial)N/L by Wβ Schurianand the induced epimorphismρ : W→ P a Schurian liftof
β|W.

We have proven:

Lemma 9. If a known quotientβ of a finitely presented group G lifts with the lift kernel isomorphic to a simple module
N, and W≤G is a subgroup such that Wβ is a vector stabilizer in the dual module of N, either N is visible from every
subgroup U with WCU ≤G and U/W solvable, or there is a Schurian lift ofβ|W.

As we aim to “discover”N (and thereby the new quotientH) we now develop a criterion for the existence of
Schurian lifts:

4.1 Relators in the Schur Cover

To study this situation, we have to examine Schur Covers in more detail. LetF be a free group,G a group with
projectionγ : F→G and letR= kerγ = 〈R 〉NT. Assume that there is an epimorphismβ : G→ B onto a finite groupB,
denote the kernel of the projection ofF ontoB by S= ker(γβ) and note thatR≤ S. We finally assume that kerβ≤G′,
that is the largest abelian quotient ofG is isomorphic to the largest abelian quotient ofB.

We want to investigate, under which conditions there can be a Schurian liftµ: G→ Q of β (that is we look for a
quotientQ of G that is a Schurian extension of a normal subgroup byGβ). For such a lift, we denote the corresponding
epimorphisms byλ : F →Q andν : Q→ B.
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Lemma 10. The quotient F/R[S,F ] is a Schurian extension of S/R[S,F ] by B and is a quotient of G. For any Schurian
lift µ of β we have for the epimorphismλ = γµ thatkerλ≥ R[S,F ].

Proof. (See figure 3 for an illustration.) As kerβ ≤ G′, we have that〈R,F ′〉 = 〈S,F ′〉. This implies, settingλ : F →
F/R[S,F ], thatSλ≤ Z(Fλ)∩(Fλ)′. AsR≤S, The epimorphismλ induces an epimorphismµ: G→ Fλ, asR, [S,F ]≤
S this epimorphism is a Schurian lift ofβ.

On the other hand for any Schurian liftµ of β (settingλ = γµ), R≤ kerλ is a condition forµ being a lift ofβ. As
Fλ is a Schurian extension ofSλ by Fβ we have thatSλ≤ Z(Fλ) and thus[S,F ]≤ kerλ.

Since according to [Schur 1907,§2,III] every Schurian extension is a factor of a Darstellungsgruppe, we now
consider Darstellundgsgruppen and the multiplierM(B)∼= (S∩F ′)/ [S,F ] of Gβ:

Definition 11. We setL := R[S,F ]∩ F ′ andWR(B) := L/[S,F ]. The factorMR(B) := (S∩ F ′)/L ∼= S/R[S,F ] ∼=
M(B)/WR(B) is called theR-fixed multiplier of B. (These definitions depend not only onR andB, but also on the
choice ofβ.)

This groupMR(B) is the largest factor of the multiplicatorM(B) that can be realized compatibly toβ andR.
If C is a complement to (the torsion subgroup)L/ [S,F ] in R[S,F ]/ [S,F ], thenC also is a complement toS∩

F ′/ [S,F ] in S/ [S,F ]. ThusF/R[S,F ] is a quotient of a DarstellungsgruppeF/C of B∼= F/S. In other words: We
obtain the largest Schurian quotient by evaluating the relatorsR for B in a suitable Darstellungsgruppe (namelyF/C)
of B. Here suitable not only means: suitable isomorphism type, but a suitable choice of the complementC which
influences the relator values in the Darstellungsgruppe.

Remark 12.If B is a group which has several nonisomorphic Darstellungsgruppen and we take forR the relators of
another Darstellungsgruppe not isomorphic toF/C, we see thatR[S,F ] does not necessarily containeverycomplement
C to S∩F ′. We therefore cannot computeWR(B) by evaluating the relator setR in an arbitrary Darstellungsgruppe,
the choice of a “suitable” group is crucial.

We get around this problem by working withL instead which does not depend on the choice ofC and which
together withC will generateR[S,F ].

Lemma 13. 〈[S,F ] ,R∩F ′〉= R[S,F ]∩F ′ = L.

Proof. As [S,F ]≤ S∩F ′ andR≤ S, both generating groups on the left hand side are in both groups on the right hand
side of the equation. To see the converse, takex∈ R[S,F ]∩F ′. Then there arer ∈ R, s∈ [S,F ] and f ∈ F ′, such that
x = rs = f . As [S,F ]≤ F ′, we see thatr = f/s∈ F ′ and thusx = r ·s∈ 〈R∩F ′, [S,F ]〉.

As
[
F :〈R,F ′〉

]
=
[
G:G′

]
< ∞ and normal subgroup generators forR andF ′ are known, Lemma 3 and Corollary 4

give a generating setI for R∩F ′ as a normal subgroup.
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Under an epimorphism fromF onto an (arbitrary) DarstellungsgruppeD, the subgroup[S,F ] maps to the trivial
subgroup ofD. Thus the setI will map to a normal subgroup generating set of (the image inD) of 〈R∩F ′, [S,F ]〉
which is (the image inD) of R[S,F ]. Furthermore, as the multiplier is central inD, the images ofI are subgroup
generators of this subgroup. We deduce:

Lemma 14. Let D be anarbitraryDarstellungsgruppe for Gβ, ν : D→Gβ the natural homomorphism andδ : F→D
be a projection of F on D such thatγβ = δν.

Let d be the list of images of the free generators of F underδ. (If only D andν are given, one can getd as
preimages underν of the images of the free generators of F underγβ, this will define such a setδ.)

Then WR(B)∼= 〈I δ〉 ≤ D (that is, it is the subgroup generated by the words inI evaluated ind).

Proof. As γβ = δν, kerδ≤ Sand so kerδ can be considered to be in place of the complement subgroupC considered
above. SinceWR(B)≤M(B) is central inD, normal subgroup generators suffice.

To expressI explicitly, we have to apply lemma 3 for the homomorphismsϕ := γ : F → F/R∼= G andψ : F →
F/F ′. As F/F ′ is abelian, the setY2 – sufficiently many conjugates of relatorsr f (r ∈ R , f ∈ F) (remember that
R = 〈R 〉NT), such that the images of these conjugates inF/F ′ will generate(kerϕ)ψ as a subgroup – consists only
of relators and no proper conjugates are needed. Also the relations of type (3) (the conjugation action ofF/F ′ on
〈Y2〉 C F/F ′) become trivial. Thus we getI = {r(Y2) | r ∈ RF} (whereRF are relators for(kerϕ)ψ C F/R in the
generating setY2ψ).

As
[
F :R·F ′

]
is finite, the subgroupRF′/F ′ ≤ F/F ′ is torsion free abelian and the relations inRF are just com-

mutators and “integral linear dependencies”. We denote these linear dependencies among the images of theY2 by Rlin .
When representing the images ofY2 in F/F ′ by coefficient vectors these dependencies can be deduced from a Smith
normal form of the matrix formed by these vectors.

Since commutator relations hold automatically inM(B) ≤ D, we obtainI δ (and thusWR(B)) by evaluating the
relatorsRlin in the imagesY2δ. We obtain these imagesY2δ by evaluating the relators inR (the relators forG) in the
free generator imagesd⊂ D.

In other words:

Theorem 15. If D is any Darstellungsgruppe of B with D/K ∼= B and
[
G:G′

]
=
[
B:B′

]
, the lift kernel of a largest

Schurian lift ofβ that is a homomorphism of G∼= F/R is given by MR(B)∼= K/WR(B), where WR(B) = 〈r(Y2) | r ∈Rlin〉
and Y2 = {r(d) | r ∈ R }.

4.2 ComputingWR(B) and MR(B)

In practice we want to computeWR(B) and the factorMR(B) for a givenB, G andβ : G→B without having to construct
a DarstellungsgruppeD first.

We note first that we can consider the differentp-parts ofM(B) and ofWR(B) separately.
For a givenB and p, the algorithm in [Holt 1984] will compute a PC presentation for a liftL of a p-Sylow

subgroupP of B with Mp(B), together with an epimorphismπ of this lift ontoP. (This lift L however isnotnecessarily
isomorphic to a Sylow subgroup of a Darstellungsgruppe ofB.)

This lift corresponds to a cocycleφ ∈ H2(P,C). Furthermore [Holt 1985] shows that the corestrictionψ :=
corP,B(φ) ∈ H2(B,C) corresponds to ap-DarstellungsgruppêB of B:

If b̂ denotes the choice of a fixed representative inB̂ for b∈ B, we have forbi ,b j ∈ B, thatb̂i b̂ j =̂(bib j)ψ(bi ,b j).
By iteration, we can therefore use the algorithm for evaluatingψ via the a “transfer”-like sum given in [Holt 1985]

to obtain for each relatorr ∈ R of G a valuemr in the p-part ofM(B).
To compute the relationsRlin , we collect (abelianized) coefficient vectors for all the relatorsr in a matrixA and

compute the Smith normal formSof A. The transformation matrixP (whenA = PSQ) then gives the linear relations
which yield thep-part ofWR(B).

We then getMR(B) as the factorM(B)/WR(B).

4.3 Application to the problem of finding lifts

We now return to the problem of finding all factor groups ofG which are lifts ofGβ with a simple module:
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Let A be the simple module ofGβ for which we want to find lifts. LetU ≤G such thatUβ is a vector stabilizer for
a nontrivial vector in the dual ofA and letU C Ũ ≤G with Ũ/U a solvable super-group ofU .

By rewriting (possibly in several steps via intermediate subgroups betweenŨ andG, which we can again find via
their images underβ) we compute a presentation ofŨ . LetH := 〈X |R 〉 be the corresponding finally presented group.
The rewriting process also gives an isomorphismζ : Ũ→H, which permits us to evaluateβ|Ũ on the isomorphic group
H. From the subgroup presentation we compute the largest solvable quotientα of Ũ so thatU/kerα is elementary
abelian.

If kerα 6≥ kerβ, the induced representationγ := α↑G(β) exposes a proper liftQ of β with a normal subgroup with a
factor isomorphicA, which is a quotient ofG.

Furthermore, from the presentation we determineMR(Uβ). If this group is not trivial, and not all of it can be
realized as a quotient ofQ, there is a Schurian lift of̃Uβ that is a quotient ofH. This lift might correspond to another
factor group of kerβ which is isomorphic toA (and thus another lift ofβ with lift kernel isomorphic toA).

In this case we have to find a new subgroupU2 of U , for which the lift will be not Schurian any longer. In many
cases (for example for the obvious choice of a non-p Sylow subgroup) however the index[G:U2] will be prohibitively
large. Further work will be needed to make the construction efficient and to represent the corresponding lift.

Remark 16.It is worth mentioning that we can be lucky and a lift obtained by inducing a representation ofU to G
will simultaneously expose the largest possible Schurian lift (and so no search for aU2 is necessary). We will see an
example of this in section 5.3

Remark 17.In practice frequently not just a single module but a sequence of modules is considered. Thus we might
find several different lifts. In this case we can in each step replaceQ by the subdirect product ofQ and the largest lift
known so far.

It is possible, that several of those lifts have the same kernel. In this case (which can be checked for by computing
the quotients of the image of one subgroup in the lift of the other) it is sufficient to construct only one lift.

Finally, in the case that lifts for several modules are to be considered, it can happen that a vector stabilizer for the
one module is contained in a vector stabilizer for the other module. In this case it is worth to remark, that ifU ≤V ≤G
everything visible fromV or every Schurian lift recognizable fromMR(V) will be visible, respectively recognizable,
from U as well. So only the smaller vector stabilizer need to be considered.

5 An example

In an eMail in thegap-forum list [Pasechnik 1998] D. PASECHNIK asked about the group

G =
〈

a,b,c,d,e, f ,g,h, i, j

∣∣∣∣ a2,b2,c2,d2,e2, f 2,g2,h2, i2,(ab)4,(ac)5,(ad)3,(ae)2,(a f)2h,

(ag)2i,(ah)2,(ai)2,(bc)2dg,(bd)2,(be)2,(b f)2d,(bg)2,(bh)3,

(bi)2e,(cd)2,(ce)2d,(c f)2,(cg)2,(ch)2g,(ci)2 f g,

(de)2,(d f)2,(dg)2,(dh)2 f ,(di)2g,(e f)2g,(eg)2,(eh)2i,

(ei)2,( f g)2,( f h)2,( f i)2,(gh)2,(gi)2,(hi)2,

j2,(d j)2e,
[

j,ad
]
,(c j)3,( j f )2gi,( jb)2eg

〉

[Baumeister et.al. 2000], which has a quotient isomorphicMcL exposed by the extra relators(acb)8 and( jca)7. Let
N be the kernel of this quotientβ : G→McL. (The question in [Pasechnik 1998] mentiones a known lift kernel 323

and asks whether this is the largest 3-lift kernel.)
We want to find possible lifts with a GF(3)-module.
The modularATLAS [Jansen et.al. 1995] lists the degrees of the smallest dimensional irreducible GF(3)-modules

of McL as 1,21,104, 104 (the dual) and 210.
(The reason we stop here and do not consider the other representations is purely practical: The involved calcu-

lations turn out to be already at the limit of what was possible with the computers available to the author. By the
techniques of this paper it would also be possible to consider the remaining modules forMcL. It is to be expected,
however, that such calculations would become even harder, while not illustrating additional features of the method.)
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Explicit matrices for these representations can be found in [Wilson et.al. 1996].
By investigating the behaviour of these representations for some large subgroups ofMcL (all calculations were

done inGAP [The GAP Group 2000]), we find subgroups which stabilize vectors in the dual modules:

Subgroup Specification Dimensions
0 McL 1
1 U4(3) point stabilizer 21
2 34.A6 2-point stabilizer 104a,210
3 31+4:2.S4 pt. stab. inN(3A) 104b

5.1 A proper lift

The groupG itself is perfect, so all trivial modules must come from Schurian lifts. SinceMcL is large, and we will
examine proper subgroups, by remark 17 it is not worth to computeMR(McL) now; we will get the same information
from subgroups.

Let U be the preimage ofU4(3) underβ. Using Reidemeister-Schreier rewriting and Tietze transformations we
find a presentation forU on 4 generators with 49 relators. Abelianizing this presentation shows thatU is perfect as
well. We also know, thatM(U4(3)) ∼= 32× 4. A calculation now shows that the 3-part ofWR(U4(3)) is trivial and
thus the 3-part ofMR(U4(3)) is 32. We therefore know, that there will be Schurian lifts which show that kerβ must
have factor groups that areMcL-modules, for whose dualsU4(3) is a vector stabilizer (for example the trivial or the
21-dimensional module).

We next look at the subgroup of type 34.A6, which is a point stabilizer inU4(3) in the action on 275 points for one
orbit of length 112. LetV be the full preimage inG of this point stabilizer. By the same methods we find a presentation
for V on 10 generators with 925 relators (of total length∼ 120000).

Representing the wreath product of the action ofU on the cosetsV\U and ofG onU\G as a permutation group we
obtain a quotient representation ofV by a permutation group of degree 30800.

This groupV has a cyclic quotient of order 3. (Indeed,V ′ is perfect of index 3 inV, so this is the largest solvable
quotient ofV.) The wreath product of this actionα with the action on the cosets ofV yields a lift ϕ = α↑G() with an

image group of order 3104· |McL|. (This disproves the original conjecture about a maximal 23-dimensional lift kernel.)
The lift kernel 3104 is an irreducible module forMcL.

Calculating permutation generators for this group 3104· |McL| took about 1 hour on an UltraSPARC 10 when start-
ing with the presentation forG. Computation of a stabilizer chain (and thus determining the order and the dimension
of the module) then took 3 hours (and required about 500MB of storage).

Remark 18.In the resulting permutation representation on 92400 point, the normal subgroup 3104 becomes a subgroup
of 330800acting intransitively with orbits of length 3. Therefore the resulting permutation group will have base length at
least 104. This, and the large degree of the permutation representation indicate, that the representation as a permutation
group is not optimal for such quotients and indeed a representation as generic wreath product might be more suitable.

The multiplier of 34.A6 has structure 2×33. Again, a calculation shows that the 3-part ofWR(34.A6) is trivial (and
thus the 3-part ofMR(34.A6) is 33). This shows that this is not the maximal lift ofβ with abelian lift kernel.

5.2 A second lift

Next, we look at a subgroup of type 31+4:2.S4. (We find this as point stabilizer in a subgroup of type 31+4:2.S5, which
in turn is the normalizer of a cyclic subgroup of order 3 inMcL.) Denote its preimage inG by X.

We find a presentation forX on 9 generators with 1223 relators (of total length∼ 240000).
The abelian quotientX/X′ has order 6, however if we mapX in the above mentioned quotient 3104.McL, we get an

imageXϕ with
[
Xϕ:Xϕ′

]
= 2. So the quotient ofX of order 3 will yield another quotient ofG which exposes another

abelian quotient part ofN.
Here we get a permutation representation of degree 231000. The resulting liftψ of β has an image group of order

3127· |McL|. The lift kernel 3127 is an uniserialMcL-module with structure 3104.3.321.3.

Remark 19.Permutations on 231000 points take up almost 1MB each. As the resulting group has base length 127, a
strong generating set therefore will take at least 127MB of memory, a stabilizer chain will require even more. In fact it
turns out that the default stabilizer chain routine inGAP will run out of memory (the author was not willing to compile
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a “static” binary to permit the use of more than 512MB of memory). Instead, intermediate results were represented
as words in the generators. The flexible type system ofGAP [Breuer and Linton 1998] made it possible to have those
new word-elements to look to the system like permutations, so that the existing code for stabilizer chain computation
could still be used.

We note that the module – being uniserial – has no factor isomorphic 3104. The quotient 3104 found before there-
fore must be adifferentquotient ofN. (In fact MeatAxe methods [Holt et.al. 1995] show that both 104-dimensional
modules are dual to each other.)

Thus we know thatN must have an elementary abelian 3-quotient of size at least 3231.
The same technique as above was used to construct generators for the module 3127 which was required to compute

the composition structure.
The multiplier of 31+4:2.S4 is of type 3×3 and again a calculation ofWR(31+4:2.S4) shows, that the whole of this

is realizable via lifts ofβ.
However, an explicit calculation in the image groupGψ shows that the whole ofMR(Xβ) is realizable in this

quotient. (This is the example promised in remark 16.)
It is also possible to combine both quotients into a subdirect product as an intransitive group of degree 323400.

Verifying that this product has size 3231 · |McL|, however stretches available computing resources, requiring about
550MB of workspace.

Remark 20.SinceXβ∼= 31+4:2.S4 is solvable one could try to use a solvable quotient algorithm now to find the largest
quotient ofX whose restriction toN is elementary abelian. We know however already that the this factor is at least
3231, which would make such a calculation very hard.

Furthermore, the approach of [Plesken 1987, Brückner 1998] is unsuitable in this situation, since the composition
factors of the large module restricted to 31+4:2.S4 are of dimension at most 4. Building already a 231 dimensional
module from such small parts becomes unfeasibly hard. Indeed theGAP implementation based on [Plesken 1987]
managed to construct a quotient of size 11664· 337 over a day and then became that slow that the calculation was
stopped.

The approach of [Niemeyer 1994] ought to work better in this situation, however (in part since the author had
severe problems to compile a working version of all required programs) this has not yet been tried.

5.3 Exposal of Schurian Lifts in other Quotients

To find out whether the lifts found also expose Schurian lifts, we map the subgroupsG, U , V andX underϕ andψ and
compute the commutator subgroups with the corresponding lift kernels. (That is for each subgroupA≤G we compute
the commutator

[
Aλ,Nλ

]
≤ Nλ.) We get

Subgroup Aβ MR(Aβ) Lift λ
[
Nλ:

[
Aλ,Nλ

]] [
Aλ:(Aλ)′

]
G McL 3 ψ 3 1
U U4(3) 32 ψ 32 1
V 34.A6 33 ψ 33 1
X 31+4:2.S4 32 ψ 33 6
X 31+4:2.S4 32 ϕ 1 2

These results show that all Schurian lifts for the subgroupsUβ andVβ (and so in turn also all Schurian lifts for
Gβ) are exposed as parts ofψ. (We implicitly also deduced that the 3-part ofMR(McL) has size 3.) AsMR(31+4:2.S4)
is already realized in full in the image underψ, there cannot be any extra Schurian lift for the module 104b.

We therefore discovered all lifts ofβ whose lift kernel has a quotient isomorphic to a module of dimension up to
210.
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