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Abstract

This paper proposes to represent subgroups of finitely presented groups by their image in a quotient. It gives
algorithms for basic operations in this representation and investigates how iteration of this approach can be used to
extend known quotients groups with a solvable normal subgroup.

Traditionally, algorithms in group theory have represented a subdyoofa finitely presented grou@ either by
a set of generators (as words in the generators of the full group) or via a coset table.

Both representations have distinctive disadvantages: A coset tabléhfs{G:U] rows, thus the space requirement
for storage can be substantial. Practically this restricts this representation to index a few million at most.

On the other hand, the representation via a generating set is not particularly suited to calculations and many
algorithms compute a coset table as a first step and then effectively work with the coset table, discarding the generating
set. Furthermore, for subgroups which are obtained as output of other algorithms, generating sets often are not what
a user wants: The standard way to obtain generators is as Schreier generators. As this is a process which “lives” in
a free group the number of generators produced grows linearly with the index, and any reduction of this number (if
possible at all) would require further work.

The first aim of this note is to introduce a different representation, hamely as a subgroup of a quotient: Given a
groupG and a homomorphisr, we represent a subgrotpwhich is a full preimage undey by the pair(¢p,Ud).

We callU aquotient subground the paif$,U¢) the quotient representatioaf U.

Such representation comes naturally to systems sudtagisus[The New York Group Theory Cooperativejyotpic[Holt and F
or XGAP[Celler and Neunbffer 1999] with a graphical user interface in which subgroups are objects whose genera-
tors or coset table are (usually) never displayed.

We will show how such representations can be created, and how to calculate with subgroups in this representation.
We will then examine how this approach can be iterated in an attempt to extend known quotients.

The approach has been implemented by the author in the sg@B@nfiThe GAP Group 2000] and is used there as
a default method for many operations for subgroups of finitely presented groups.

1 Creation of Quotient Representations and Easy calculations

If U < Gis of finite index a Todd-Coxeter coset enumeration [Todd and Coxeter 1936] will yield a permutation repre-
sentationp of G on the cosets dfi. The image ot is the stabilizer Stafy (1). So the quotient representationlbfis
(9, Staksg (1)).

Similarly, the low-index subgroup algorithm [Sims 1994, 5.6] can be considered to produce admissible homo-
morphisms¢ into permutation groups, the quotient representation of the subgroups found is again of the form
(¢,Stalsy(1)). A variant is the “G-quotient” algorithm [Holt and Rees 1992], [Hulpke 1996, V.5] that (by a sim-
ilar search) finds quotients isomorphic to a given group.



Figure 1: A subdirect product

Quotient algorithms such as theeQuotient [Macdonald 1974], Nilpotent QuotientfWamsley 1974, Nickel 1996],
Solvable Quotient [Plesken 1987, Niemeyer 1994)d&ner 1998], and Polycyclic Quotient [Lo 1998] all return a
homomorphismb. Subgroups induced by this quotient are naturally given in quotient representation.

If Wis a homomorphism with domai@, the quotient representation of kgis (U, ()). In particular, this permits
us to represent the intersections of the conjugates of a subgroup (whose indextamioh makes coset tables very
space-consuming) in a quotient representation using the same homomodphism

This provides a natural way to represent commutator subgrd@ips:the kernel of the epimorphism on the largest
abelian quotient (whose structure we obtain by abelianizing the presentatids)« B, the commutator subgroup
[G,N] has a quotient is we obtain by adding the commutatdgsn| (for g andn running through a generating set of
G, respectivelyN) to the relators of5. A lower central series is obtained by taking fiothe epimorphism o6 onto
its largest nilpotent quotient (as found by a Nilpotent Quotient Algorit@nihe terms of the lower central series of
G are the preimages undgrof the lower central series .

For a more complex example consideBl,(Z) which is isomorphic to a free Produ€} « C3. A congruence
subgroups such d%(N) = { ( 2 3 )
under the “reduction-mo8iF’ homomorphism. So we can represent these subgroups (and calculate with them) in
guotient representation as subgroup€pf Cs.

If a subgroug < Gis given in quotient representati¢h,Ud), we can obtain the representation via a coset table
as well as subgroup generators easily (so the quotient representation will still permit use of all existing algorithms):

A coset table folJ in G represents permutations for the actiorGodn the cosets dfi. But this permutation action
has the same image as the actioséfon the cosets dfi¢ and we can compute permutations for this action easily if
an element test ib ¢ is available.

To compute generators bf, we can then simply take this permutation action on the cosets, and compute Schreier
generators for it. It should be emphasized, however, that in almost all cases subgroup generators will not be required
for further calculations and are more of a space-consuming hindrance than of actual help.

For a membership test, observe that U if and only if xp € U, as kep < U.

c=0 (mod N)} is the pre image of the group of upper triangular matrices

2 Subdirect Products

Now assume thatl,V < G are subgroups given by the quotient representafiprisd) and(p, V). We setA := G
andB := Gy and define a homomorphisen G — A x B, g— (g0, gu). Its kernel is the intersectiofkerd Nkery).
The imageGe is asubdirect producof A andB [Remak 1930].

Denote the normal subgroup generated by both kernel by (ker¢,kery). ThenM is mapped to two normal
subgroup<E := M¢ < A andF := My < B. By the homomorphism theorem we ha&¢E =~ G/M = B/F. The
structure is displayed in picture 1.

If A andB are both represented as permutation groups, the direct prédu@ can be represented again as a



permutation group (on the disjoint union of the domain&aindB) and we can use this representation to compute in
its subgroupGe. Similarly if A andB are both matrix groups over the same fiddds B can be represented as matrix
group again by block matrices. AfandB are given by polycyclic presentations, we can easily write down a polycyclic
presentation oA x B.

We now map a generating systera- (g1, ... ,01) under both projections and get generating systemsgé of A
andb := gy of B. Let (x| ®) be a presentation f@ on generators corresponding td. Then the epimorphism from
the free groupX = (x): B:= (X — B,x+ b) factors viay := (X — G,x — @) asp = yy. The kernel ke thus is the
image of ke undery, and therefor& = (kerP)ys. a

For a subsef C G of a groupG, we denote by.S)nt thenormal closureof §, that is the smallest normal subgroup
of G containing all elements f.

By the definition of a presentation K&r= (R )nt ThereforeE is the normal closure iA of the set{r(a) | r € R }
of relators ofB evaluated ira. We call this subgroup theokernelof the relation: B — A obtained by extending the
mapping(b — a) homomorphically.

To computek, it is sufficient to have a procedure to evaluate a set of defining relators in given generators, there is
no need to actually write down a full presentation. Such a procedure is already available as part of the functionality
for computing kernels of homomorphisms [Leedham-Green et.al. 1991].

If v C Bis a generating set &fy, thenV is generated by ke together with representatives of preimagey of
undery. Therefore/ ¢ is the subgroup of generated by and representatives of imageswadinderd.

Similarly F is the cokernel of the homomorphic closiref (a— b) andUy = (F,u§ | u € u) for a generating set
uofUdg.

We can therefore computgF, and the converse imagelsp andV¢ directly from the constituentd andB with
the generating set andb. Furthermore, note thate < A x B is the full preimage ot y under the projection form
Geto A

This gives us all the necessary input for the following computations:

Lemmal. a) A quotient representation ofQV is(g,UeNVe).
b) A quotient representation d0,V) is (¢, (Ud,V)).
c) A quotient representation of V) is (g, Nye(Ve)).
d) A quotient representation ¢fyccU?is (¢,Ngege (U )9).

e) Representatives for the double co¢t&/ are given by (the preimages undérof) representatives for the
double cosets) )\GON/ ¢.

Proof. As kere <U,V, a) follows immediately. Similarly b) follows from kér< U < (U,V). For c) observe that
kere <V < Ng(V); d) follows as ket < ng(;UG. Finally in e), the double cosets are orbitsvobn the cosets df
for which ¢ is a bijection. O

To test containment, we do not need to form the subdirect product:
Lemma2.V <Uifandonlyif: 1. E<U¢ and 2. i < U .

Proof. As ker) <V and because subset relations are preserved by homomorphisms 1. and 2. are certainly necessary.
Vice versa 1. implies thdtenp < U. In this situation it is sufficient to test containment in the imagepivhich
proves sufficiency of the criterion. O

Inclusion in both directions gives an equality test.

2.1 Presentations for Subdirect Products

In the course of this paper we shall need a presentation for a subdirect product. The following approach must be
well-known; it is only given here, as I've not been able to find explicit literature references.

We consider a subdirect product of two finitely generated gréugnsdB via an isomorphism of their factor groups
A/E with B/F and letg: ALB — A, : ALB — B be the component projections. Xfis a generating set fok LB,



X = X¢ andX = Xy are generating sets férand forB. We assume we are given presentations for the constituent
groupsA= (X | ®) andB = (X | §) in these generators (script letters will be used to denote sets of relators). We shall
write w(X) do denote an abstract wordXh

Then kep = (r(X) | r € R )nt. By adding conjugates, we extend this se¥ie= {r(X)?|r € R, somea e (X)}
such thatr = (ker¢)p = (YoW). We denote byg = Yo the images of, in B. Given the presentations férandB
we can verify that enough conjugates are taken by checkingBhéfg)| = [A:E]. Rewriting the presentation in these
subgroup generators we furthermore get a present@or®e ) for F. Finally, using rewriting inlYg) < B, we obtain
conjugation relation®c = {y* =w(Y2) | y € Yz,x € X}.

Lemma 3. A presentation for AB is given by:

XYz | y=w(X) (yeYo) 1)
ri2)  (re®e) 2
Rc) (3)

where the relations (1) are the definitions gfasé words in X.

Proof. The relations given certainly hold lv.B as they were obtained frof.B.

If we add relation®, = 1 to the given presentation, the relations of type (1) become conjugatgs(r € R ,a <
(X)) containing the whole o .. The resulting group is thus generatedwand isomorphic té\.

The kernel of this projection ontA is generated by conjugates8f, and relations of type (3) show thét,) is
conjugation invariant. Furthermore the relations (2) show {itgtmust be isomorphic to a factor group fof O

Using Tietze transformations and the expressions (¥} at words inX, we can get rid of the auxiliary generators
Y, and obtain a presentation in termsxaf

Corollary 4. IfF isafree group/R.,.S are finite sets generating normal subgroygs)n, (S)nt < F and [F:(ﬂ{,j}NT]
is finite, the intersectio® )ntN (S)nT < F is finitely generated as a normal subgroup.

3 lIterated Quotient Representations

As mentioned above, B < G is given in quotient representatidf,U¢), we can obtain a coset table 1drin G from
the action ofG on the cosets dil ¢.
Using Reidemeister rewriting [Magnus et.al. 1966, 2.3], it is then possible to compute from this coset table a set of
generators of) and a presentation in these generators [Havas 1974,i8euth982]. (In practice, one would simplify
the resulting presentation using Tietze transformations before working with it.)
This new presentation (and the rewriting process for subgroup elements) thus enables us to evaluate homomor-
phisms with domaitJ. One can then again apply algorithmd.pobtaining subgroups &f in quotient representa-
tion.
If V <U is such a subgroup, given by the quotient representgtiovia) with a defined orlJ, we want to get
a quotient representation fot as a subgroup o6. We can achieve this using the embedding theorem for wreath
products [Krasner and Kaloujnine 1951]:
Let B be the permutation action @& on the cosets dff and seC =Ua andD = GB. We label the cosets &f
in G from 1 ton = [G:U] and pick coset representativés} such thatr;3 maps 1 toi. Now we define a mapping
y= GT%)Z G—C!D=C*".Dby:

V:ig— ((r1~g-r(‘lé)) a,..., (ri gr(‘lgl)) a,..., (rn~g~r(‘n§)> cx,gB) eCc*"D
(writing i* for i*® and noting thatixr(*ixl> eVv).
Remark 5.If the image ofa is a permutation groufi;: D can be represented as a permutation group agamisifa
matrix representatioty,can be considered as the induced representalﬁ@;n. (This proves thagis a homomorphism.)

In general the representation will be by tuples of elements with an appropriate multiplication. (Following a sug-
gestion of J. Neulser, these can be realized by “monomial type” matrices.)



Let & be the homomorphism defined &ty defined by(uy)d = ua (this is well-defined as kgr< kera). It is
surjective ontdC, so there is a subgroip< Uywhich is the full preimage of o underé. The quotient representation
of V as a subgroup & therefore igy,V).

If o is a permutation action as well, aMlis a point stabilizer in this action, the resulting images a point
stabilizer in the resulting permutation actipfor the wreath product.

In practice, once we computed a presentatiob) pfve will work with an isomorphic finitely presented groUp
and compute the further quotiemtfrom the presentation df .

Thus, to evaluate on elements of) < G we must express these elements as words in the generatdra/ioich
gave the presentation fof. This can be achieved by the same Reidemeister rewriting process used to compute a
presentation of) in the first place.

Typically the rewritten presentatidn will be unhandily large and one will apply Tietze transformations first to
shrink it (see the survey [Havas and Robertson 1993]). To keep the connection to the trigimaltherefore has to
keep track of the Tietze transformations being done.

If the index ofU gets larger, a little bit of care has to be taken to avoid memory problems: By default the rewriting
yields a word that also uses “secondary” generators (these are defined as words in “primary” generators.) Expanding
these as words using only the primary generators can result in an exponential growth of the word lengths. Instead, we
compute the images afll secondary generators undeand rewrite immediately as an elementid. If elements of
this image group are given in unique form (say as matrices or permutations) this exponential growth will not apply in
this representation.

Finally, some care has to be taken if we compute quotient subgroipsdd < G whenV itself had been given
by a quotient ofJ. The way we found the quotients it would be tempting to rewrite elemenésasf elements 0B
viaU. However this means that at an intermediate stage we would have to handle rewritten elerdeassvedrds,
which (as mentioned above) can become extremely long. Instead it is much quicker to create a new augmented coset
table forV and to rewrite using this table.

4 Polycyclic-by-finite groups

Definition 6. Let: G — H be an epimorphism. A homomorphisin G — N.H with kerd < kerp andN = ker3/ kerd
is called dift of 3. We callN thelift kernel of d.

Remark 7.Following the use in [Huppert 1967, Robinson 1996], we call an extensienNL— N.H — H — 1 an
extension of N by H(This means that the image group of a liftith lift kernel N is an extension dfl by Gf3.)

We now consider the situation thgg:U] is finite, B is the permutation action @& on the cosets dff and that
a homomorphisn: U — Ua is obtained as a result of a polycyclic (or nilpotent) quotient algorithm applied to a
presentation fol. (For finite groups, “polycyclic” is equivalent to “solvable”.) Theku is polycyclic andy: G —

Ua: GB is a lift of B whose image is polycyclic-by-finite with the “finite” part given 3.

As polycyclic-by-finite groups are the largest class of groups for which an algorithmic theory is possible [Baumslag et.al
a natural question which arises at this point is therefore whether this iterated quotient construction can help to expose
all polycyclic-by-finite factor groups d; respectively all such factors, where the top part is given by the irgfige

Certainly all such lifts can be found by computing polycyclic quotientsdoe kerf3, indeed the embedding
theorem for wreath products is often given only for this situation (for example, see [Huppert 1967, 15.9]).

On the other hand the number of generators and relators for a subgroup presentation grows with the subgroup
index, and even reduction methods such as Reduced-Reidemeister-Schreier and Tietze transformations cannot remedy
this fully. Therefore the index of kris often too big to make the computation of a presentation computationally
feasible. The algorithmic question we face is thus: Given a homomorghiimd a subgroupy > kerp of index as
small as possible, such that a quotient algorithm applidd will find some (or all) finite by polycyclic factors that
lift GB. This gives rise to:

Definition 8. Assume there is a lifd: G — H of B whose lift kerneIN = (kerp)d < H is a polycyclic group. Take
U < G with kerp <U. We say thaN is visible from Uif there is a homomorphism onU so that the imag&a is
polycyclic and thaf e (kera)9 < kerd.

Certainly any polycyclidN is visible from kei3. We also observe that visibility does not solely depend on the image
U, but also on the type of the extension: Consider the casefgfahd 2x Ag. In both cases there is a factor group



Figure 2: Visibility Condition

GP isomorphicAg with normal subgroufN isomorphicZ,. We consider a subgroup so thatU 3 = Staby, (1) = As.
In the first case, the image &f in H is the perfect group.2s, soN is invisible fromU. In the second example,
however the image df in H is 2 x As, so there is a nontrivial solvable quotientvhich makesN visible.

For the general situation, I8tbe a lift of p andV :=U(*®)d = (U5)(*) be the smallest normal subgrouplb® with
solvable factor. Then visibility oN means thaK :=V NN does not contain any nontrivial normal subgrougHof
We also seM := (V,N). SoUd/M is the largest solvable quotient /N = U . ThusM = X whereX is the full
preimage of(UB)(*) underP. As intersection of two normal subgrougé,is normal inUd, soU3/K is a subdirect
product ofud/V with Ud/N with common factot 8/M. Picture 2 illustrates this situation.

Now consider the easiest nontrivial case: AssumeNhata minimal normal subgroup éf and thus is elementary
abelian. ThemN /K is abelian and thus!’ <V. FurthermoreN /K is central inM /K and thus/ <1 M.

N is a module foiGB =2 H/N. When restricted (from being@B3-module) toMp, the moduleN has a trivial factor.
In other words: There is a subgroMp < U (we can set for exampl/ := M) such thatJ /W is solvable and that
W} is a subgroup of a vector stabilizer for the dual moduléNofLet L < N be anMp-submodule (consideriniy
as anMB-module by restriction) of codimension one with trivial factor module. \As1 M, the factorM /L has a
complement (namelyV, L) /L) to N/L.

Vice versa, leW < G be a subgroup such thatf3 stabilizes a vector for the dual modulelf Then there must be a
Wp-submodulé. < N of codimension 1, and thus<t W3. In the factoM3/L, either the perfect residuufva,/ L))
intersects trivially withN /L (and soN is visible fromW and thus visible from any > W with U /W solvable) or it
containsN/L. In this second case, settiRg= (Wd)/L, we have thaN/L < Z(P)NP andP = (N/L).(W). We call
such an extension of a (nontrividl)/L by W[ Schurianand the induced epimorphispt W — P a Schurian liftof
Blw-

We have proven:

Lemma 9. If a known quotieng of a finitely presented group G lifts with the lift kernel isomorphic to a simple module
N, and W< G is a subgroup such that s a vector stabilizer in the dual module of N, either N is visible from every
subgroup U with W< U < G and U/W solvable, or there is a Schurian lift Bfy.

As we aim to “discover’N (and thereby the new quotieht) we now develop a criterion for the existence of
Schurian lifts:

4.1 Relatorsinthe Schur Cover

To study this situation, we have to examine Schur Covers in more detailF lbet a free groupG a group with
projectiony: F — G and letR= kery= (R )nt. Assume that there is an epimorphifmG — B onto a finite grouy,
denote the kernel of the projectionBfontoB by S= ker(y) and note thaR < S. We finally assume that k@r< G/,
that is the largest abelian quotient®fis isomorphic to the largest abelian quotienBof

We want to investigate, under which conditions there can be a Schurign Bt— Q of (3 (that is we look for a
quotientQ of G that is a Schurian extension of a normal subgroupy. For such a lift, we denote the corresponding
epimorphisms by.: F — Qandv: Q — B.
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Figure 3: Schurian Lift

Lemma 10. The quotient FR[S F] is a Schurian extension of R[S F] by B and is a quotient of G. For any Schurian
lift p of B we have for the epimorphisin= yu thatkerA > R[S F].

Proof. (See figure 3 for an illustration.) As kBr< G', we have thatR F’) = (S F’). This implies, setting\: F —
F/R[SF], thatS\ <Z(FA)N(FA). AsR< S The epimorphism induces an epimorphispt G — FA, asR, [SF] <
Sthis epimorphism is a Schurian lift @

On the other hand for any Schurian lifiof 3 (settingh = yu), R < kerA is a condition foru being a lift of 3. As
FA is a Schurian extension @& by F3 we have thaB\ < Z(FA) and thugS F] < kerA. O

Since according to [Schur 190%2,111] every Schurian extension is a factor of a Darstellungsgruppe, we now
consider Darstellundgsgruppen and the multigiéB) = (SNF’)/[S F] of G:
Definition 11. We setL := R[SF]NF’ andWk(B) := L/[SF]. The factorMgr(B) := (SNF’)/L = S/R[SF] =
M(B)/WR(B) is called theR-fixed multiplier of B (These definitions depend not only 8andB, but also on the
choice off3.)

This groupMg(B) is the largest factor of the multiplicatdt (B) that can be realized compatibly fcandR.

If Cis a complement to (the torsion subgroup)[S F] in R[S, F]/[S F], thenC also is a complement t8N
F'/[SF] in S/[SF]. ThusF /R[S F] is a quotient of a DarstellungsgruppeC of B F/S. In other words: We
obtain the largest Schurian quotient by evaluating the rela&gisr B in a suitable Darstellungsgruppe (namEgljC)
of B. Here suitable not only means: suitable isomorphism type, but a suitable choice of the comenteah
influences the relator values in the Darstellungsgruppe.

Remark 12.If B is a group which has several nonisomorphic Darstellungsgruppen and we takelterrelators of
another Darstellungsgruppe not isomorphiE#€, we see thaR[S, F] does not necessarily contaaerycomplement
C to SNF’. We therefore cannot compuiék(B) by evaluating the relator s&in an arbitrary Darstellungsgruppe,
the choice of a “suitable” group is crucial.

We get around this problem by working withinstead which does not depend on the choic€ @find which
together withC will generateR[S F].
Lemma 13. ([SF],RNF) =R[SF|NF'=L.

Proof. As [SF] < SNF’ andR < S both generating groups on the left hand side are in both groups on the right hand
side of the equation. To see the converse, takeR[S F]NF'. Then there arec R, s< [SF] andf € F/, such that
x=rs=f. As[SF] <F’, we see that = f/se F’ and thusx=r-se (RNF’,[SF]). O

As [F:(R, F’ﬂ = [G:G’] < o0 and normal subgroup generators RandF’ are known, Lemma 3 and Corollary 4
give a generating sdtfor RNF’ as a normal subgroup.



Under an epimorphism frorR onto an (arbitrary) Darstellungsgruppe the subgrougS F| maps to the trivial
subgroup ofD. Thus the sef will map to a normal subgroup generating set of (the imagb)inf (RNF’,[S F])
which is (the image iD) of R[S F]. Furthermore, as the multiplier is centraly the images off are subgroup
generators of this subgroup. We deduce:

Lemma 14. Let D be ararbitraryDarstellungsgruppe for , v: D — Gp the natural homomorphism ardd F — D
be a projection of F on D such thg = dv.

Letd be the list of images of the free generators of F under(If only D andv are given, one can get as
preimages undev of the images of the free generators of F unggrthis will define such a sét)

Then W(B) 2 (13) < D (that is, it is the subgroup generated by the wordg ievaluated ird).

Proof. As yp = dv, kerd < Sand so kebd can be considered to be in place of the complement subgagmsidered
above. Sinc&\r(B) < M(B) is central inD, normal subgroup generators suffice. O

To expresd explicitly, we have to apply lemma 3 for the homomorphigns=-y: F — F/R= G andy: F —
F/F’. AsF/F'is abelian, the seYt, — sufficiently many conjugates of relatars (r € ®, f € F) (remember that
R = (R )nT), such that the images of these conjugates i’ will generate(kerd )W as a subgroup — consists only
of relators and no proper conjugates are needed. Also the relations of type (3) (the conjugation €fiBh af
(Y2) <t F/F’) become trivial. Thus we get = {r(Y2) | r € Re } (whereRg are relators fokerp)y < F/Rin the
generating seta\).

As [F:R-F’] is finite, the subgroulRF'/F’ < F /F’ is torsion free abelian and the relations#a are just com-
mutators and “integral linear dependencies”. We denote these linear dependencies among the imagelyoRthe
When representing the images¥fin F /F’ by coefficient vectors these dependencies can be deduced from a Smith
normal form of the matrix formed by these vectors.

Since commutator relations hold automaticallyMi{B) < D, we obtain/d (and thusWg(B)) by evaluating the
relators®y, in the image,6. We obtain these imagésd by evaluating the relators i} (the relators folG) in the
free generator imagasc D.

In other words:

Theorem 15. If D is any Darstellungsgruppe of B with [ = B and [G:G'] = [B:B'|, the lift kernel of a largest
Schurian lift of that is a homomorphism of & F /R is given by M(B) = K /Wr(B), where VK(B) = (r(Y2) | r € Riin)
and%={r(d)|reR}.

4.2 ComputingWk(B) and Mg(B)

In practice we want to computiik(B) and the factoMg(B) for a givenB, G andf3: G — B without having to construct
a Darstellungsgruppe first.

We note first that we can consider the differerparts ofM(B) and of\Wk(B) separately.

For a givenB and p, the algorithm in [Holt 1984] will compute a PC presentation for a lifof a p-Sylow
subgrougP of B with M(B), together with an epimorphismof this lift onto P. (This lift L however isnotnecessarily
isomorphic to a Sylow subgroup of a DarstellungsgruppB.pf

This lift corresponds to a cocycle € H?(P,C). Furthermore [Holt 1985] shows that the corestrictipn=
corpp(Q) € H?(B, C) corresponds to a-DarstellungsgruppB of B:

If b denotes the choice of a fixed representativl for b € B, we have foib;, b; € B, thatbib; = (bib; )y(b;, by ).

By iteration, we can therefore use the algorithm for evaluatinga the a “transfer”-like sum given in [Holt 1985]
to obtain for each relatare X of G a valuemy, in the p-part of M(B).

To compute the relation®),, we collect (abelianized) coefficient vectors for all the relatoirs a matrixA and
compute the Smith normal for®of A. The transformation matriR (whenA = PSQ then gives the linear relations
which yield thep-part of\Wr(B).

We then geMg(B) as the factoM (B) /Wr(B).

4.3 Application to the problem of finding lifts

We now return to the problem of finding all factor groupsaivhich are lifts of G with a simple module:



Let A be the simple module a3 for which we want to find lifts. Let < G such thatJ 3 is a vector stabilizer for
a nontrivial vector in the dual o and letU <t U < G with U /U a solvable super-group bf.

By rewriting (possibly in several steps via intermediate subgroups betdeemlG, which we can again find via
their images unde) we compute a presentationWdf LetH := (X | ® ) be the corresponding finally presented group.
The rewriting process also gives an isomorphisnt — H, which permits us to evaluaf; on the isomorphic group
H. From the subgroup presentation we compute the largest solvable quotiéit so thatU / kera is elementary
abelian.

If kera # kerp, the induced representatign— O(T?B) exposes a proper lif) of B with a normal subgroup with a
factor isomorphid, which is a quotient o6.

Furthermore, from the presentation we determiiigU3). If this group is not trivial, and not all of it can be
realized as a quotient @, there is a Schurian lift dfi B that is a quotient oH. This lift might correspond to another
factor group of kep which is isomorphic téA (and thus another lift o with lift kernel isomorphic tod).

In this case we have to find a new subgrdigpof U, for which the lift will be not Schurian any longer. In many
cases (for example for the obvious choice of a poBylow subgroup) however the indg®:U,] will be prohibitively
large. Further work will be needed to make the construction efficient and to represent the corresponding lift.

Remark 16.1t is worth mentioning that we can be lucky and a lift obtained by inducing a representatidrico
will simultaneously expose the largest possible Schurian lift (and so no searchlfas amecessary). We will see an
example of this in section 5.3

Remark 17.In practice frequently not just a single module but a sequence of modules is considered. Thus we might
find several different lifts. In this case we can in each step refiaog the subdirect product @ and the largest lift
known so far.

It is possible, that several of those lifts have the same kernel. In this case (which can be checked for by computing
the quotients of the image of one subgroup in the lift of the other) it is sufficient to construct only one lift.

Finally, in the case that lifts for several modules are to be considered, it can happen that a vector stabilizer for the
one module is contained in a vector stabilizer for the other module. In this case it is worth to remark) tka i G
everything visible fronV or every Schurian lift recognizable froMgr(V) will be visible, respectively recognizable,
fromU as well. So only the smaller vector stabilizer need to be considered.

5 Anexample

In an eMail in thegap-forum list [Pasechnik 1998] D.ASECHNIK asked about the group

= <a, b.c,d.ef,ghi,j | ab%c%d? e, 1% g% h,i2 (ab* (ac)®, (ad)® (ag)? (af)?h,

%i,(ah)?, (ai)?, (bc)’dg, (bd)?, (be)?, (bf)?d, (bg)?, (bh)>,
e (cd)?, (ce)?d, (cf)?, (cg)?, (ch)?g, (ci)*fg,

de)?, (df)?, (dg)®, (dh)*f,(di)’g, (ef)’g, (eg)? (eh),

ei) 7(f9)27(fh)2»( ) (9 ) (gi)?, (hi)?,

i%,(dj)% [j,ad],(c gi, (jb) eg>

[Baumeister et.al. 2000], which has a quotient isomorphat. exposed by the extra relatofach)® and (jca)’. Let
N be the kernel of this quotieft: G — McL. (The question in [Pasechnik 1998] mentiones a known lift kerfl 3
and asks whether this is the largest 3-lift kernel.)

We want to find possible lifts with a GB)-module.

The modularATLAS [Jansen et.al. 1995] lists the degrees of the smallest dimensional irreducit@e B6&dules
of McL as 1,21,104, 104 (the dual) and 210.

(The reason we stop here and do not consider the other representations is purely practical: The involved calcu-
lations turn out to be already at the limit of what was possible with the computers available to the author. By the
techniques of this paper it would also be possible to consider the remaining modulslfott is to be expected,
however, that such calculations would become even harder, while not illustrating additional features of the method.)



Explicit matrices for these representations can be found in [Wilson et.al. 1996].
By investigating the behaviour of these representations for some large subgradps ¢dll calculations were
done inGAP [The GAP Group 2000]), we find subgroups which stabilize vectors in the dual modules:

| Subgroup Specification Dimensions
0 | McL 1
1| Ua(3) point stabilizer 21
2| 3*As 2-point stabilizer 104a,210
3| 31425, pt stab. inN(3A) 104b

5.1 A proper lift

The groupG itself is perfect, so all trivial modules must come from Schurian lifts. SMct is large, and we will
examine proper subgroups, by remark 17 it is not worth to comdgt@/icL) now; we will get the same information
from subgroups.

Let U be the preimage dfi4(3) underf3. Using Reidemeister-Schreier rewriting and Tietze transformations we
find a presentation fd on 4 generators with 49 relators. Abelianizing this presentation showd/tieaperfect as
well. We also know, thaM(U4(3)) = 3% x 4. A calculation now shows that the 3-part\ok(U4(3)) is trivial and
thus the 3-part oMg(U4(3)) is 3. We therefore know, that there will be Schurian lifts which show thaBkaust
have factor groups that aMcL-modules, for whose dualds(3) is a vector stabilizer (for example the trivial or the
21-dimensional module).

We next look at the subgroup of typé.8e, which is a point stabilizer itl4(3) in the action on 275 points for one
orbit of length 112. LeV be the full preimage i of this point stabilizer. By the same methods we find a presentation
forV on 10 generators with 925 relators (of total lengtti20000).

Representing the wreath product of the actioblain the cosety\U and ofG onU\G as a permutation group we
obtain a quotient representation\bby a permutation group of degree 30800.

This groupV has a cyclic quotient of order 3. (Indedd,is perfect of index 3 iV, so this is the largest solvable
quotient ofV.) The wreath product of this actianwith the action on the cosets ¥fyields a lift¢ = GTS with an

image group of order’84.|McL|. (This disproves the original conjecture about a maximal 23-dimensional lift kernel.)
The lift kernel 3%is an irreducible module favicL.

Calculating permutation generators for this grodff*3McL| took about 1 hour on an UltraSPARC 10 when start-
ing with the presentation fd6. Computation of a stabilizer chain (and thus determining the order and the dimension
of the module) then took 3 hours (and required about 500MB of storage).

Remark 18.In the resulting permutation representation on 92400 point, the normal subdffilye8omes a subgroup

of 3308004¢ting intransitively with orbits of length 3. Therefore the resulting permutation group will have base length at
least 104. This, and the large degree of the permutation representation indicate, that the representation as a permutation
group is not optimal for such quotients and indeed a representation as generic wreath product might be more suitable.

The multiplier of 3.Ag has structure 2 33. Again, a calculation shows that the 3-paridf(3*.As) is trivial (and
thus the 3-part oMg(3*.As) is 3%). This shows that this is not the maximal lift Biwith abelian lift kernel.

5.2 A second lift

Next, we look at a subgroup of typé'3:2.S,. (We find this as point stabilizer in a subgroup of tye%32.S5, which
in turn is the normalizer of a cyclic subgroup of order 3MiL.) Denote its preimage i by X.

We find a presentation fof on 9 generators with 1223 relators (of total lengt240000).

The abelian quotierX /X" has order 6, however if we mapin the above mentioned quotient®3McL, we get an
imageX¢ with [X¢:X¢’] = 2. So the quotient ok of order 3 will yield another quotient & which exposes another
abelian quotient part dfl.

Here we get a permutation representation of degree 231000. The resultingfift has an image group of order
3127, |McL|. The lift kernel 327 is an uniseriaMcL-module with structure $4.3.321.3,

Remark 19.Permutations on 231000 points take up almost 1MB each. As the resulting group has base length 127, a
strong generating set therefore will take at least 127MB of memory, a stabilizer chain will require even more. In fact it
turns out that the default stabilizer chain routin&ilaP will run out of memory (the author was not willing to compile
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a “static” binary to permit the use of more than 512MB of memory). Instead, intermediate results were represented
as words in the generators. The flexible type syste®AR [Breuer and Linton 1998] made it possible to have those
new word-elements to look to the system like permutations, so that the existing code for stabilizer chain computation
could still be used.

We note that the module — being uniserial — has no factor isomorpffic Bhe quotient 3°4 found before there-
fore must be alifferentquotient ofN. (In fact MeatAxe methods [Holt et.al. 1995] show that both 104-dimensional
modules are dual to each other.)

Thus we know thaN must have an elementary abelian 3-quotient of size at 1885t 3

The same technique as above was used to construct generators for the médutéch was required to compute
the composition structure.

The multiplier of 3+4:2.S, is of type 3x 3 and again a calculation Wkr(3'4:2.S,) shows, that the whole of this
is realizable via lifts of3.

However, an explicit calculation in the image groG shows that the whole d¥igr(Xp) is realizable in this
quotient. (This is the example promised in remark 16.)

It is also possible to combine both quotients into a subdirect product as an intransitive group of degree 323400.
Verifying that this product has size% - |McL|, however stretches available computing resources, requiring about
550MB of workspace.

Remark 20.SinceXp = 31+4:2.S, is solvable one could try to use a solvable quotient algorithm now to find the largest
guotient ofX whose restriction tN is elementary abelian. We know however already that the this factor is at least
3231 which would make such a calculation very hard.

Furthermore, the approach of [Plesken 1987jd&ner 1998] is unsuitable in this situation, since the composition
factors of the large module restricted t6"3:2.S; are of dimension at most 4. Building already a 231 dimensional
module from such small parts becomes unfeasibly hard. IndeedAReimplementation based on [Plesken 1987]
managed to construct a quotient of size 11684 over a day and then became that slow that the calculation was
stopped.

The approach of [Niemeyer 1994] ought to work better in this situation, however (in part since the author had
severe problems to compile a working version of all required programs) this has not yet been tried.

5.3 Exposal of Schurian Lifts in other Quotients

To find out whether the lifts found also expose Schurian lifts, we map the subg&uhd/ andX under¢ andy and
compute the commutator subgroups with the corresponding lift kernels. (That is for each subgr@iwe compute
the commutatof A\, NA| < NA.) We get

Subgroup| A MR(AB) Lift A [NA:[ANNA]|  [AN:(AN)]
G | McL 3 1 3 1
U | Ug(3) 3 1] 3 1
V| 3*As 3 U] 3 1
X | 3t42s 32 1] 38 6
X | 3t42s 32 ) 1 2

These results show that all Schurian lifts for the subgrauipsandV 3 (and so in turn also all Schurian lifts for
GB) are exposed as parts ¢f (We implicitly also deduced that the 3-partMi(McL) has size 3.) A#r(314:2.5;)
is already realized in full in the image undgythere cannot be any extra Schurian lift for the module 104b.

We therefore discovered all lifts @ whose lift kernel has a quotient isomorphic to a module of dimension up to
210.
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